
Optimal Supply Functions in Electricity Markets with Option
Contracts and Non-Smooth Costs

Edward J. Anderson

Australian Graduate School of Management

University of New South Wales

Sydney, 2052 NSW Australia

Email: eddiea@agsm.edu.au

Huifu Xu

Faculty of Mathematical Studies

University of Southampton

Highfield, Southampton, SO17 1BJ United Kingdom

Email: h.xu@maths.soton.ac.uk

Abstract. In this paper we investigate the optimal supply function for a generator who sells
electricity into a wholesale electricity spot market and whose profit function is not smooth. In

previous work in this area, the generator’s profit function has usually been assumed to be con-

tinuously differentiable. However in some interesting instances, this assumption is not satisfied.

These include the case when a generator signs a one-way hedge contract before bidding into

the spot market, as well as a situation in which a generator owns several generation units with

different marginal costs. To deal with the non-smooth problem, we use the model of Anderson

and Philpott, in which the generator’s objective function is formulated as a Stieltjes integral

of the generator’s profit function along his supply curve. We establish the form of the optimal

supply function when there are one-way contracts and also when the marginal cost is piecewise

smooth.

1 Introduction

In this paper we discuss the following profit optimization model for a generator who sells elec-

tricity into a wholesale market:

max
s

v(s) (1)

where we define v(s) =
R
sR(q, p)dψ(q, p), and s is a non-decreasing supply curve. This is a

type of constrained calculus of variations problem. Here v(s) is the generator’s expected profit

when s is the graph of a supply function which describes the prices and quantities that the

generator offers; R is the generator’s profit function, that is, if the market clears at price p and

the generator gets dispatched a quantity q, then R(q, p) is the total profit for the generator; and

ψ(q, p) is the probability of the generator not being fully dispatched if it offers at price p with

a quantity of q (i.e. the probability of being dispatched a quantity strictly less than q). We
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investigate the solution of (1) when R is piecewise continuously differentiable (piecewise C1 in

short).

This model was first introduced by Anderson and Philpott [2]. It applies in a pool system

in which generators bid different quantities of power into the market at different prices, and

then an independent system operator decides how actual demand is to be met by dispatching

cheaper power first. In the simplest case, when all power is offered at the same node, there is

a single price at which the market clears and this is the price paid to each generator for all the

power it supplies. Generators compete with each other, with each generator offering a supply

schedule, usually made up of tranches of power at different prices. Actual electricity markets

have to operate within the constraints of an electricity network, and moreover have a number

of features designed to ensure continuity of supply.

By assuming the continuous differentiability of the profit function R and of the ψ-function,

Anderson and Philpott investigated first order necessary conditions for a general supply curve

to be locally optimal. Anderson and Xu [4] extended the discussion to consider both second

order conditions and sufficient conditions for optimality.

In this model the generator aims to maximize v(s), the expected profit. In some circum-

stances a stronger type of optimality can be achieved in which s is chosen so that the generator’s

profit is maximized for every possible realization of the uncertainties in the market. This idea

was first used by Klemperer and Meyer [17] to derive a Nash supply function equilibrium (SFE)

in an oligopoly where every player faces uncertainty in demand. Green and Newbery [14] noted

that in electricity markets the uncertainty of demand is equivalent to daily time-varying de-

mand, when a single supply schedule is applied over a whole day. They used the SFE model to

investigate optimal supply functions in the electricity market in England and Wales. Since then,

the SFE model has been widely used to study bidding behaviour in an electricity spot market,

see for instance [9, 21, 19, 11, 10] and the references therein. In the original work on SFE ([17]

and [14]), supply functions were required to be monotonically strictly-increasing and continu-

ously differentiable. In recent work the SFE approach has been extended to non-decreasing and

discontinuous supply functions ([10, 11, 20]).

In this paper we investigate the optimization problem (1) when the profit function R is

piecewise continuously differentiable. We consider two ways in which the non-smoothness in R

can occur.

The first case is associated with the contracts that a generator may sign before bidding in

the spot market. Such contracts are used to hedge risks in the spot market; they are financial

instruments and do not involve an actual transfer of power. Some further information om

different kinds of electricity derivatives can be found in Deng and Oren [8]. The most common

types of contract that a generator may sign are: (a) a one-way (call option) contract which

commits the generator to pay any positive difference between the pool price and the strike price

to the holder of the contract; (b) a one-way (put option) contract which gives the generator the
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right to claim any positive difference between the pool price and the strike price; (c) a two-way

contract that establishes a strike price for both generator and contract holder. If the pool price is

above the strike price, the generator compensates the contract holder the difference, otherwise he

claims the difference. Two-way contracts were discussed by Green [13] and Newbery [18] in the

framework of SFE. More recently, Anderson and Xu used the model (1) to investigate the impact

of two-way contracts on the generator’s optimal supply function. The one-way contracts (both

put and call options) add non-smoothness to the profit function R, while a two-way contract

does not. In this paper we derive globally optimal supply curves that solve (1) when there are

one-way contracts.

The other case which leads to piecewise smoothness of the profit function occurs when the

generator’s cost function is piecewise smooth. A generator may own a number of generation

units and each unit has its own marginal cost. Consequently the generator’s cost function

becomes piecewise C1. Baldick, Grant and Kahn [10] discussed a linear SFE model under the

circumstance of piecewise C1 cost functions. In this paper, we show how the optimization

approach can deal with a generator having a cost function with a general piecewise structure.

Much of the previous work in this area has been concerned with equilibrium analyses, with

the aim of assessing the market behaviour when generators compete. Our analysis considers the

problem from the point of view of a single generator, with only limited knowledge of the other

generators. This is a significant limitation. Electricity markets operate as repeated games and

we should expect that, in the absence of any form of collusion, market outcomes would approach

a Nash equilibrium for this game. Nevertheless we claim our analysis is of interest.

Firstly we note that a game theory analysis carried out in the usual way assumes common

knowledge of generator characteristics. Often, exact knowledge about cost structures for other

generators is unlikely, and in particular in most markets generators will not know or be able

to deduce the terms of contracts signed by other generators. Often such contracts are signed

for short periods of time and the contract position of a generator varies from day to day. This

makes it unlikely that a generator can learn about the contract position of another generator by

observing their bidding strategy over time.

Second we observe that the analysis we give is valuable in ascertaining the difficulties involved

in a full equilibrium analysis. With full information, some of the optimal policies that we derive

have prices at which a non-zero quantity is offered, which means the supply function jumps

in quantity at a particular price. This will have the effect of making the market distribution

function discontinuous for other players. In this case an optimal solution may not exist - so that

a Nash equilibrium cannot be found. Anderson and Xu ([7]) show how ε-optimal solutions can

be calculated in these circumstances.

We claim that the form of the optimal policies that we derive is of interest, even if it is not

easy to translate this work into an equilibrium model.
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2 Problem formulation and fundamentals

We need to fill in some background on the formulation of (1). For convenience, we will write

generator A for the generator whose optimal policy we wish to find. We begin by considering

generator A’s profit function R(q, p). Usually R(q, p) has three components. First there is the

cost of generating a quantity q of electricity which we write as C(q), and which we shall assume

is an increasing convex function. Second there is the amount pq that is paid to the generator

through the market clearing mechanism. Third, there are payments that may be made as a

result of hedging contracts entered into by the generator. The hedging contracts are financial

instruments with the money paid under the contract tied to the pool price. We write H(p) for

the money added to (or deducted from, when H(p) < 0) the generator’s profit when the market

clears at price p. Thus

R(q, p) = qp− C(q) +H(p).

Throughout this paper, we assume that spot market demand is given by D(p)+ � where p is

the price and � is a random shock. We denote by g the density function of the distribution of the

random shock and assume that g is well defined and has an interval support set [�1, �2]. We take

demand to be continuously differentiable and strictly decreasing in price, that is, D0(p) < 0.

In the spot market each generator makes an offer into the market: in many cases this takes

the form of an offer stack, being a set of quantities at increasing prices. We use a supply

function, S, to describe the price-quantity relationship, so that S(p) denotes generator A’s offer

of quantity at price p. The way that the market operates means that we must restrict supply

functions to be increasing (though not necessarily strictly). The supply function is defined on

[0, pM ] where pM is the price ceiling that operates in the spot market. In many markets it is

possible to bid at a negative price, and spot prices in the middle of the night can occasionally be

negative. This occurs when demand is very low and generators have to carry the cost of turning

equipment on and off: sometimes it makes sense for a generator to pay for the privilege of being

left on. However in our model, for simplicity, we normalize prices so that the lower limit is zero.

There is no loss of generality in doing this so long as there is a finite price floor.

Generators in an electricity market offer energy into the market at prices they determine.

We can express the quantity of electricity offered as a function of price p, S(p) say, which is

the amount to be delivered if the market clearing price is p. Note that in electricity markets,

offers are required to be put in ascending order of price with those offered at lower price getting

dispatched first. Therefore we require S(p) to be non-decreasing. In some cases, we will use, for

convenience, the graph of a supply function which is defined as: s = {(S(p), p) : 0 ≤ p ≤ pM}.
The graph s is a curve in the quantity-price plane which we call the supply curve.

Anderson and Philpott [2] prove that the expected profit for generator A if it offers a supply

function S(p) can be expressed as a Stieltjes line integral over the supply curve s:

v(s) =

Z
s
R(q, p) dψ(q, p),
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where ψ is a continuous market distribution function for generator A.

To define the function ψ we need to introduce the residual demand function DA(p) where the

subscript A indicates that this is the residual demand for generator A. The residual demand at

a price p is the demand which occurs at this price (assuming no demand shock) which will not

be met by dispatch from the other generators. If we let SB(p) be the aggregate supply function

offered by the other generators, then DA(p) = D(p) − SB(p). The residual demand function,

given a particular random demand shock �, is DA(p) + �.

The market distribution function ψ(q, p) represents the probability that the residual demand

function passes below the point (q, p) and is defined as

ψ(q, p) = Pr(DA(p) + � < q) = G(q −DA(p)),

where G(·) is the distribution function of the random shock �. An alternative definition of ψ

arises from the observation that ψ(q, p) is the probability that generator A is not fully dispatched

if it offers a quantity q of power at price p.

Consequently

ψ0p(q, p) = g(q −DA(p))(−D0
A(p)),

and

ψ0q(q, p) = g(q −DA(p)).

Clearly, provided that DA is continuously differentiable, then ψ will also be continuously differ-

entiable.

Note that v(s) only depends on the part of curve s where dψ(S(p), p) 6= 0 or equivalently

g(q −DA(p)) 6= 0. This defines a set of points (q, p) which we write as Ψ. Thus

Ψ = {(q, p) : �1 ≤ q −DA(p) ≤ �2}.

In choosing a supply curve, generator A need only consider the part of this curve located in Ψ.

We call Ψ the effective response region for generator A.

There are essentially three kinds of contracts that a generator may sign, and hence three

forms for the function H(p).

A two-way contract: - a contract for differences. This is the type of contract which
has been widely discussed in the literature [13, 18, 15, 6]. If the generator enters into a contract

at a strike price f for a quantity Q, and the market clearing price in the spot market is p, then

the generator will pay an amount Q(p− f) to the contract holder if p > f . Conversely, if p < f ,

then the generator will get paid from the contract holder an amount of Q(f − p). Consequently

the profit function for the generator can be written as:

RQ(q, p) ≡ qp− C(q)−Q(p− f). (2)
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A one-way contract: - a call option. Generators may also enter into one-way contracts.
If generator A sells a call option with strike price f , then generator A will pay Q(p− f) to the

contract holder if p > f , but no payment is made if p < f (see e.g. von der Fehr and Harbord

[23] ). Consequently the generator’s profit function can be written as:

R1(q, p) ≡ qp− C(q)−Qmax(p− f, 0). (3)

Obviously this function is not differentiable at p = f . Von der Fehr and Harbord [23] investigated

the impact of these contracts on a generator’s bidding behaviour in a Bertrand type game.

A one-way contract: - a put option. The other option for a one-way contract is that
generator A buys a put option with strike price f . In this case generator A will be paid Q(f−p)
from the other party to the contract if p < f , but no payment is made if p > f (see [23]).

Consequently, the generator’s profit function takes the following form:

R2(q, p) ≡ qp− C(q)−Qmin(p− f, 0). (4)

As with R1, R2 will not be differentiable at p = f .

Notice that all of these contracts are financial instruments alone and do not involve the

delivery of power directly from the generator to the retailer, say. Thus we assume, as is the case

in New Zealand and Australia, for example, that all physical power is sold through the spot

market. Note that in practice, a generator may have different types of contracts at different

prices, but we simplify our discussion by considering a generator who holds a single contract.

All of the contracts we describe are hedging contracts, which are designed to protect the

market participants from fluctuations in the spot market price. When there are no contracts

a higher price in the spot market leads to a higher profit for the generator; with any of the

contract positions above there is some reduction in the extent to which higher prices imply

higher generator profits. Indeed when the contract quantity Q is sufficiently above the capacity

of the generator, a higher spot market price might even lead to a lower generator profit.

There are alternative cases: for example a generator might buy a call option and hence

receive Qmax(p−f, 0), rather than pay this amount. But this would serve to increase the effect
of market price fluctuations on the participants, and so would not serve to hedge the price risk.

It is less likely that a generator would enter such a contract unless it were seeking to magnify

its market power. Similarly a generator selling a put option, rather than buying it, would not

obtain any protection from price movements. We will not analyse these alternative one-way

contracts here, though in fact the techniques of this paper can be applied.

Our focus in this section is to derive optimal supply functions for generator A in the case that

it signs one of the one-way contracts before bidding into the spot market. The main difficulty

here is that the profit functions (both R1 and R2) for the generator are not differentiable at the

strike price of a contract f . Note that both R1 and R2 are a combination (through maximum

or minimum) of RQ and R0 (i.e. RQ with Q = 0). This motivates us to construct an optimal
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supply function for the problem with a one-way contract through combining the optimal supply

functions with respect to R0 and RQ.

3 Optimal supply function with two-way contracts

We begin by considering the case when Generator A holds a two-way contract and wishes to

submit an optimal supply curve to the spot market in order to maximize its expected profit.

Thus the generator needs to solve the following problem

max
s

v(s) ≡
Z
s
RQ(q, p)dψ(q, p), (5)

where s is a non-decreasing curve. This problem was investigated by Anderson and Xu [6] and

we review some of their results.

Let qM denote denote A’s generation capacity. Suppose that the generator has signed con-

tracts with a total quantity ofQ and then offers into the spot market a supply curve s. To ease the

analysis, we assume that 0 < Q ≤ qM , in other words the generator does not speculate beyond

his capacity. Since generator A cannot offer more than qM and the highest offer price cannot

exceed pM , any supply curve from generator A must be located in the region [0, qM ]× [0, pM ].
On the other hand, as we discussed above, the expected profit v(s) only depends on the part of

curve s located within Ψ. Therefore, our discussion of optimality conditions for s is focused on

the region Ψ ∩ [0, qM ]× [0, pM ]. For convenience, let

Φ ≡ Ψ ∩ [0, qM ]× [0, pM ].

Let Φo denote the interior of the set Φ.

We shall assume that DA(p) is strictly decreasing and continuously differentiable on (0, pM)

and C(q) is continuously differentiable on (0, qM).

The characteristics of the residual demand, DA(p), depend on the nature of the supply

curves offered by the other generators. We do not assume that these other offer curves are

known to generator A. There is uncertainty day-to-day as circumstances change, and, for most

markets of this sort, full information on competitor’s bids is not available to participants. In

these circumstances a generator needs to estimate the residual demand function from limited

information and it is natural to use a smooth estimate for DA(p). One could go further and

make use of Bayesian estimation techniques to update estimates on the basis of information

observed. Anderson and Philpott [3] adopt this approach in making smooth estimates of the

market distribution function ψ.

Write a candidate supply curve for generator A as s = {(S(p), p) : 0 ≤ p ≤ pM , 0 ≤ S(p) ≤
qM}. Anderson and Xu [6] prove that if S is optimal and strictly increasing and continuously
differentiable, then

(p− C 0(S(p)))(−D0
A(p))− S(p) +Q = 0, (6)

7



for (S(p), p) ∈ Φo. The equation coincides with those obtained by Green [13] and Newbery [18]
using a SFE model in their investigation of the impact of two-way contracts on a generator’s

bidding strategy in the spot market.

This equation can be derived as follows: let s be the supply curve corresponding to supply

function S(p) and let es be a perturbed supply curve of s. The difference between the expected
profits based on these two curves is

v(es)− v(s) =

Z
s̃
RQ(q, p)dψ(q, p)−

Z
s
RQ(q, p)dψ(q, p).

Using the classical Green’s theorem [16], we can show that the right hand side of this expression

equals
R R

AZQ(q, p)dqdp, where

ZQ(q, p) ≡ (RQ)
0
q(q, p)ψ

0
p(q, p)− (RQ)

0
p(q, p)ψ

0
q(q, p)

= g(q −DA(p))
£
(p− C 0(q))(−D0

A(p))− q +Q
¤

and A is the area within the effective response region Ψ surrounded by es and s. From this

observation it is not hard to see that a necessary condition for s to be optimal (given that it is

strictly increasing) is that ZQ(q, p) = 0, and this gives (6).

We will also be interested in constructing the unique global optimal solution. To achieve

this we need to make the following assumption for particular values of Q.

Assumption 3.1 For a given Q, equation (6) defines a unique strictly increasing function S(p)

for p ∈ [0, pM ].

This assumption might hold for one value of Q, but not for another. We will need to use the

assumption for values of Q in the range 0 ≤ Q ≤ qM .

This assumption is equivalent to the function ZQ taking the value zero on a single strictly

increasing curve in the q, p-plane (the curve q = S(p)). Moreover since

(∂/∂q)((p− C 0(q))(−D0
A(p))− q +Q) = C 00(q)D0

A(p)− 1 < 0

we can see that the ZQ is positive to the left of the q = S(p) curve and negative to the right of

it (using the fact that g(.) is non-negative). Hence under this assumption the offer curve S (p)

divides the region Φ into two with ZQ > 0 above and to the left of the offer curve, and ZQ < 0

below and to the right of the offer curve.

Assumption 3.1 is not very restrictive in practice and can be easily checked for specific

examples. Anderson and Xu [6] have shown that this assumption will hold if the estimate of

residual demand DA is sufficiently close to affine. In particular Assumption 3.1 is guaranteed if

both DA and C are twice continuously differentiable, (Q,C 0(Q)) ∈ [0, qM ]× (0, pM), and

−D0
A(p)

2/Q ≤ D00
A(p) ≤ −D0

A(p)/p. (7)

In the case when Q = 0, we only need the second inequality.
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Lemma 3.1 ([6, Proposition 3.1]) Suppose that Assumption 3.1 holds for a given contract quan-
tity Q ∈ [0, qM ]. Let (qL, pL) and (qU , pU ) denote respectively the points at which the graph of
S(p) intercepts the lower and upper boundaries of Φ. Then we can represent the curve as a sup-

ply function S(p) defined on (pL, pU ), or equivalently an offer function T (q) = S−1(q) defined on

(qL, qU ). We extend T by defining T (q) = 0, for 0 ≤ q ≤ qL, and T (q) = pM , for qU ≤ q ≤ qM .

Then T is the unique optimal offer function up to changes outside Φ.

We have slightly extended the result of Anderson and Xu by allowing Q to take the extreme

values 0 and qM . A careful reading of [6, Proposition 3.1] shows that this change does not affect

the proof of the result. We will make use of the result for Q = 0 in our discussion below.

It is convenient to write the optimal supply function defined in Lemma 3.1 as S(p,Q) to

show explicitly its dependence on the contract quantity Q. Similarly we write pL, qL, pU , qU as

pL(Q), qL(Q), pU (Q), qU (Q) to show explicitly their dependence on Q.

Based on Lemma 3.1, we can obtain two optimal supply functions S(p,Q) and S(p, 0) corre-

sponding respectively to the profit functions RQ(q, p) and R0(q, p). We are interested in the case

that the corresponding supply curves cross the p = f line in the region Ψ at point (S(f, 0), f)

and point (S(f,Q), f). Obviously S(f,Q) 6= S(f, 0) when Q > 0. The following lemma shows

that S(f,Q) > S(f, 0) and the two supply functions do not cross within the Φ region.

Lemma 3.2 If Q > 0 and both S(p,Q) and S(p, 0) are strictly increasing functions then

S(p,Q) > S(p, 0), for all p ∈ [pL(Q), pU (Q)]
\
[pL(0), pU (0)].

The result shows that the optimal supply curve when there is a contract is located strictly

above (in the p, q-plane) the optimal supply curve when there is no contract. From this it follows

that, for a given quantity, the generator should sell at a higher price when there is no two-way

contract. Results of this form are well known in this literature (e.g. Newbery [18]).

Example 3.1 We give an example to compare optimal supply function with two way contracts
and without contract. The example is a variation of [6, Example 3.3]. We suppose that a

generator has a two way contract of quantity 1.5 at strike price f = 1.

Suppose that the generator faces a residual demand DA(p)+�, where DA(p) = 0.5 log(1+p)−
p, and � has a uniform distribution over the interval [0.5, 4]. The generator’s cost for producing

a quantity q of electricity is given by C(q) = q2/2. There is a price cap of pM = 5. We use

Lemma 3.1 to work out the optimal supply function for the generator.

The effective response region is

Ψ = {(q, p) : q ≥ 0, 0 ≤ p ≤ 5 : 0.5− p+ 0.5 log(1 + p) ≤ q ≤ 4− p+ 0.5 log(1 + p)}.
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The first step is to calculate S(p, 0) and S(p, 1.5). We have,

D0
A(p) =

1

2(1 + p)
− 1.

Substituting D0
A(p), C

0(q) = q and Q = 1.5 into (6), we have

(p− q)

µ
1− 1

2(1 + p)

¶
− q + 1.5 = 0.

Solving for q in terms of p in this equation, we obtain

S(p, 1.5) =
2p2 + 4p+ 3

4p+ 3
.

Similarly, we can obtain

S(p, 0) =
2p2 + p

4p+ 3
.

Since the equations for S(p, 0) and S(p, 1.5) have unique solutions in increasing curves, Assump-

tion 3.1 holds for both Q = 0 and Q = 1.5.

Next we identify optimal supply curves for Q = 0 and Q = 1.5. We consider the Q = 0 case

first.

We calculate pL(0) and qL(0). We solve

0.5− p+ 0.5 log(1 + p) =
2p2 + p

4p+ 3
,

and obtain pL(0) = 0.50247; hence qL(0) = S(pL(0), 0) = 0.20109. This identifies the point

where the supply curve S(p, 0) crosses the lowest residual demand curve at the boundary of the

effective region Ψ. Similarly we can obtain pU (0) = 1.5055; hence qL(0) = S(pU (0), 0) = 3.2137.

Based on these data, we can describe the optimal curve. It starts from (0.2019, 0) and goes

vertically to the point (0.2019, 0.50247) to enter the Ψ region. Then it follows the S(p, 0) curve

until it crosses the upper boundary of Ψ at (1.5055, 3.2137). Finally it goes vertically up to the

price cap at (1.5055, 5). We can express it as follows

S0(p) =

⎧⎪⎨⎪⎩
0.20109, p ∈ [0, 0.50247),
(2p2 + p)/(4p+ 3), p ∈ [0.50427, 3.2137),
1.5055, p ∈ [3.2137, 5].

We now consider the Q = 1.5 case. Since S(p, 1.5) equals 0 at p = 0, the curve S(p, 1.5)

does not cross the lower boundary of Ψ. The optimal supply curve starts from (1, 0) and follows

the S(p, 1.5) curve until it crosses the upper boundary of Ψ at point (2.0201, 2.6236). Finally it

goes vertically to the price cap at (2.0201, 5). The optimal supply function can be written as

S2(p) =

(
(2p2 + 4p+ 3)/(4p+ 3), p ∈ [0, 2.6236),
2.0201, p ∈ [2.6236, 5].
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Figure 1: Optimal supply curves for Example 3.1

This is illustrated in Figure 1, where the two optimal solutions are shown. The dashed line

shows the marginal cost curve which is below the optimal offer without contracts (at least over the

range of possible dispatch), but intersects the optimal offer for the Q = 1.5 case at the contract

quantity. It is important to note that the strike price f = 1 is not reflected in S2(p). In other

words, if f = 2, then we still have the same optimal supply curve so long as Q is unchanged.

We will use this result in later examples in which we consider one way contracts (see Examples

4.1 and 5.1).

Note also that the optimal curve of S0(p) is above that of S2(p) in the q, p-plane, which

illustrates Lemma 3.2.

4 One-way contract — call option

As we discussed above, the generator’s profit function when it has sold a call option is given by

R1 defined as in (3). The optimization problem for the generator becomes

max
s

v(s) ≡
Z
s
R1(q, p)dψ(q, p), (8)

where s is a non-decreasing curve. Observe that R1 is a combination of R0 and RQ, that is,

when the market clears below the strike price f , R1(q, p) = R0(q, p) and when the market clears

above the strike price f , R1(q, p) = RQ(q, p). This indicates that the solution of (8) may be some

type of combination of S(p,Q) and S(p, 0). Note that neither S(p,Q) nor S(p, 0) is a solution of

(8). In fact, there is no monotonically strictly increasing and continuously differentiable optimal

supply curve for (8). We need to consider a monotonic non-decreasing supply function. The

following theorem shows how a unique global optimal supply function of (8) can be constructed.

11



Theorem 4.1 Suppose that Assumption 3.1 is satisfied for both contract quantities Q and 0.

Let S(p, 0), qL(0), pL(0), S(p,Q), qU (Q) and pU(Q) be defined as in Lemma 3.1. Define

S(p) ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
qL(0), p ∈ [0, pL(0)],
S(p, 0), p ∈ [pL(0), f),
S(p,Q), p ∈ [f, pU (Q)],
qU (Q), p ∈ [pU (Q), pM ].

(9)

Then the graph of S is the unique optimal solution of (8).

Theorem 4.1 shows that the optimal supply curve contains a horizontal segment in the q, p-

plane. In other words, the optimal supply function S jumps at the strike price p = f . The

following lemma concerns the size of this jump, which is the amount of power offered at the

strike price f .

Proposition 4.1 Under the conditions of Theorem 4.1, if the optimal supply function S offers

a quantity W at the strike price f , then W ≤ Q with equality if and only if the generator’s

marginal cost is constant over the range of quantities q for which the supply function offers at

the strike price f .

Proof. From Theorem 4.1 we know that W = S(f,Q)− S(f, 0). From the proof of Lemma 3.2

we have

W = (C 0(S(f, 0))− C 0(S(f,Q)))(−D0
A(f)) +Q.

The result follows since −D0
A(f) > 0 and C

0 is increasing. For equality we require C 0(S(f, 0)) =

C 0(S(f,Q)),which is equivalent to the condition of the lemma. ¤

A well-known observation is that, when a generator signs a two-way contract, it should sell

in the spot market at the marginal cost for q = Q, below its marginal cost for q < Q, and above

the marginal cost for q > Q. Thus the curve S(p,Q) passes through the point (Q,C 0(Q)) in the

q, p-plane. From a market perspective, the generator needs to sell the uncontracted part at a

price above the marginal cost to make a profit, while it does not need to do so for the contracted

part. See [13, Proposition 1] and also a discussion in [6]. The following result shows that this

is not going to be true when the generator has sold a call option, in that the generator’s offer

price may be greater than its marginal cost at any level of its offer.

Proposition 4.2 Suppose that f ≥ C 0(Q) and the conditions of Theorem 4.1 hold. Then the

optimal supply curve is above the marginal cost curve, that is, for p ∈ [pL(0), pU (Q)],

S(p) ≤ (C 0)−1(p).

Proof. By definition for p ≤ f , S(p) = S(p, 0) and for p > f , S(p) = S(p,Q). From (6), since

D0
A(p) < 0 for all p, and S(p, 0) ≥ 0, it follows that S(p, 0) ≤ (C 0)−1(p). On the other hand,

12
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Figure 2: Optimal supply curve for Example 4.1

for p > f > C 0(Q), if S(p,Q) ≤ Q, then p > C 0(S(p,Q)) and we have a contradiction from (6).

Hence S(p,Q) > Q and so p > C 0(S(p,Q)), again using (6), i.e. S(p,Q) < (C 0)−1(p) for any

p > f . The conclusion follows. ¤

The lemma shows that if a generator has sold a call option contract, and the strike price

is greater than the marginal cost for generating the contracted quantity of electricity, then the

generator’s sale price will be greater than his marginal cost at any level of output.

In some cases a generator may sell one-way call option contracts at a number of different

prices. In this case we may use a construction like that of Theorem 4.1 to obtain an optimal

supply function which jumps at each strike price.

Example 4.1 We give an example to illustrate Theorem 4.1. The example is a variation of

Example 3.1. We suppose that a generator has sold a call option of quantity 1.5 at strike price

f = 1.

The effective response region is the same, that is,

Ψ = {(q, p) : q ≥ 0, 0 ≤ p ≤ 5 : 0.5− p+ 0.5 log(1 + p) ≤ q ≤ 4− p+ 0.5 log(1 + p)}.

We use S(p, 0) and S(p, 1.5) which are obtained in Example 3.1 to construct an optimal supply

function following Theorem 4.1.

Since the equations for S(p, 0) and S(p, 1.5) have unique solutions in increasing curves, As-

sumption 3.1 holds for both Q = 0 and Q = 1.5.

The optimal supply curve is shown as the solid line in Figure 2. It starts from (0.2019, 0)

and goes vertically to the point (0.2019, 0.50247) to enter the Ψ region. Then it follows the
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S(p, 0) curve until it reaches the call option strike price p = 1 at which point q = 0.42857. Using

Theorem 4.1, the optimal curve then goes horizontally to the point (1.2857, 1) which is on the

S(p, 1.5) curve. The optimal curve then follows S(p, 1.5) until it crosses the upper boundary of

Ψ at point (2.0201, 2.6236). Finally it goes vertically to the price cap at (2.0201, 5). The optimal

supply function can be written as

S(p) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0.20109, p ∈ [0, 0.50247),
(2p2 + p)/(4p+ 3), p ∈ [0.50427, 1),
(2p2 + 4p+ 3)/(4p+ 3), p ∈ [1, 2.6236),
2.0201, p ∈ [2.6236, 5].

5 One way contract — put option

Now we discuss the case that generator A’s profit function is given by (4). The generator needs

to solve the following maximization problem:

max
s

v(s) ≡
Z
s
R2(q, p)dψ(q, p). (10)

Observe that R2 is a combination of R0 and RQ. As in the R1 case, we would like to use S(p,Q)

and S(p, 0) to construct the optimal solution of (10). The construction will be more complex in

this case than it was for a call option. Instead of switching from s0 (the graph of S(p, 0)) to sQ
(the graph of S(p,Q)), we need to make the switch the other way round. Since S(f,Q) is greater

than S(f, 0), moving from supply curve sQ to s0 at price f will result in non-monotonicity of

the supply function as a whole. So we need to connect the two supply curves with a vertical line

segment in the (q, p)-plane to ensure the optimal supply function is monotonic increasing.

Let

Z(q, p) =

(
ZQ(q, p), p ≤ f,

Z0(q, p), p > f.

Note that the value of Z(q, f) will not be important in the following discussion.

The lemma below is derived from Theorem 3.1 in Anderson and Xu [4], which was in turn

derived from an earlier result of Anderson and Philpott [2].

Lemma 5.1 Suppose that s = {x(t), y(t), 0 ≤ t ≤ T} is an increasing continuous offer curve
which is optimal. Suppose that there exist m numbers 0 ≤ t1 < t2 < ... < tm ≤ T with

0 < x(t) < qM and 0 < y(t) < pM for t1 < t < tm and such that on each section (ti−1, ti),

i = 2, ...,m, s is either strictly increasing in both components, or horizontal, or vertical, with

different characteristics in successive segments. On segments for which s is strictly increasing

in both components, Z(x(t), y(t)) = 0. On horizontal or vertical segments,Z ti

ti−1

Z(x(τ), y(τ))(x0(τ) + y0(τ))dτ = 0, i = 2, ...,m,
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unless the segment is horizontal and at the strike price, f .

Proof. The proof is by perturbations of the offer curve s. All the arguments given by Anderson
and Philpott carry through provided that when an area integral of Z uses an area crossing the

strike price, f , the integral is carried out in two parts (above and below the strike price) to allow

the application of Green’s theorem. We omit the details here. ¤

Now we are in a position to provide a characterization of the optimal supply curve around

the strike price f .

Theorem 5.1 If Assumption 3.1 is satisfied for both contract quantities Q and 0, then there is

an optimal supply function, and if S(p) is optimal then there are constants ζ, δ1 > 0, δ2 > 0,

such that S(p) = ζ for p ∈ {f − δ1, f + δ2}.

Note that a vertical section like this in the (q, p) plane implies that none of the generator’s

capacity is bid at prices close to the strike price of the contract.

For the call option we established a stronger result, with a unique global optimal solution

under the same assumption. Unfortunately to obtain a similar result for the put option case

requires stronger conditions, which are technically complicated and almost impossible to verify.

The theorem shows that an optimal solution when there is a put option involves a vertical

segment. Lemma 5.1 shows that the line integral of Z along a vertical segment is zero, and this

can often be used to determine the position of this vertical segment.

Example 5.1 We give an example to illustrate Theorem 5.1, which is a variation of Example

3.1. Suppose that the generator has bought a put option for quantity 1.5 at strike price f = 2.

We have the same S(p, 0) and S(p, 1.5) as before, that is,

S(p, 1.5) =
2p2 + 4p+ 3

4p+ 3
,

and

S(p, 0) =
2p2 + p

4p+ 3
.

The difference is that here the two curves are connected by a vertical segment rather than a

horizontal segment in the (q, p)-plane.

The optimal supply curve is shown in Figure 3. Since S(p, 1.5) equals 0 at p = 0, the curve

S(p, 1.5) does not cross the lower boundary of Ψ. The optimal supply curve starts from (1, 0) and

follows the S(p, 1.5) curve until it reaches the point (1.3245, 1.0939). Then it moves vertically

to the point (1.3245, 2.8469) on the S(p, 0) curve. These points are chosen so thatZ 2.8469

1.0939
Z(1.3245, y)dy = 0.
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The optimal supply curve then follows the S(p, 0) curve until it crosses the upper boundary of

Ψ at (1.5055, 3.2137). Finally it goes vertically up to the price cap at (1.5055, 5). The optimal

supply function can be written as

S(p) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(2p2 + 4p+ 3)/(4p+ 3), p ∈ [0, 1.0939),
1.3245, p ∈ [1.0939, 2.8469),
(2p2 + p)/(4p+ 3), p ∈ [2.8469, 3.2137),
1.5055, p ∈ [3.2137, 5].

6 Piecewise continuously differentiable cost functions

In this section we consider a case where the cost function is non-smooth. This happens when

a single generator owns several generation units with different marginal costs and its overall

marginal cost function is discontinuous from one generation unit to another. Here we assume

that a generator’s marginal cost is piecewise continuous, leading to a piecewise smooth cost

function.

In most discussions in the literature [2, 6, 10, 14, 13, 18, 12, 19] the generators’ cost functions

are assumed to be smooth. In some cases, the marginal cost function is even assumed to be

affine. Baldick and Hogan [11] pointed out that this assumption does not capture jumps in

marginal cost from, say, coal, to gas technology, and there may also be jumps simply because of

the different ages of the generation units.

In order to focus on the impact of non-smoothness in the cost function, we ignore the

16



possible non-smoothness in the profit function caused by other factors such as one way contracts.

Therefore, we take generator A’s profit function to be

R(q, p) = qp− C(q),

where

C(q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

C1(q) 0 ≤ q ≤ q1,

C2(q) q1 < q ≤ q2,
...

Cn(q) qn−1 < q ≤ qn,

Cn+1(q) qn < q ≤ qM .

(11)

We assume that for i = 1, · · · , n
C 0i+1(q

+
i ) > C 0i(qi), (12)

where

C 0i+1(q
+
i ) = lim

δ↓0
C 0i+1(qi + δ).

The inequality (12) implies that there is a jump in marginal cost in moving from generation unit

i to generation unit i+ 1.

As before, our problem is

max
s

v(s) ≡
Z
s
R(q, p)dψ(q, p), (13)

where the function R now incorporates jumps in marginal cost. Let Si(p) denote the optimal

supply function which corresponds to Ci. We will use a similar approach to that we used in the

previous section; that is we use the optimal supply functions Si, corresponding to different cost

functions Ci, to construct a global optimal supply function.

We let pli and p
u
i be the prices at which the curve defined by Si crosses the boundaries of the

region between qi−1 and qi. Thus Si(pli) = qi−1 and Si(p
u
i ) = qi. We can use (6) to show that pli

and pui satisfy the following equations:

(pli − C 0(q+i−1))D
0
A(p

l
i) + qi−1 = 0,

(pui − C 0(qi))D
0
A(p

u
i ) + qi = 0.

Now we are in a position to use Si to construct an optimal supply function over [0, pM ] for

the nonsmooth cost function C(·).

For simplicity, assume the supply curve of S1 and Sn+1 intercept the boundary of Ψ respec-
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Figure 4: Optimal supply curve when marginal cost has discontinuities

tively at (pL, qL) and (pU , qU ). We define the following supply function (see Figure 4):

S(p) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

qL, p ∈ [0, pL],
S1(p) p ∈ [pL, pu1 ]
qi, p ∈ [pui , pli+1], i = 1, · · · , n,
Si(p), p ∈ [pli, pui ], i = 2, · · · , n,
Sn+1(p), p ∈ [pln+1, pU ],
qU , p ∈ [pU , pM ].

(14)

The following theorem shows that this supply function is globally optimal. First we define

Zi(q, p) to be the function Z when costs are given by Ci, i = 1, · · · , n+ 1. Thus

Zi(q, p) = g(q −DA(p))
£
(p− C 0i(q))(−D0

A(p))− q
¤
.

Theorem 6.1 Suppose that, for a given contract quantity Q, Assumption 3.1 is satisfied in each
region qi−1 < q ≤ qi, i = 1, 2, ...n + 1, so that the supply functions Si(p) are uniquely defined.

Let S(p) be defined as in (14). Then S(p) is the unique optimal solution of (13).

We can express the optimal supply curve as a function of q, which we write T (q). Then

T (q) is strictly increasing and is discontinuous at qi, i = 1, 2, · · · , n, where the marginal cost
function C0 jumps. This is consistent with what we would expect: when the marginal cost jumps

upwards, the generator should increase its offer price.

Example 6.1 We give an example to illustrate Theorem 6.1. The example is a variation of Ex-
ample 3.1. We suppose that a generator has a piecewise continuously differentiable cost function
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as follows

C(q) =

(
1
20q

2, 0 ≤ q < 1,
1
2q
2 − 0.45, 1 ≤ q.

Obviously C(q) is piecewise smooth and

C 0(q) =

(
1
10q, 0 ≤ q < 1,

q, 1 ≤ q.

is discontinuous at q = 1.

Suppose that the generator faces a residual demand DA(p) + �, where DA(p) = 0.5 log(1 +

p)−p, and � has a uniform distribution over the interval [0.5, 4]. There is a price cap of pM = 5.

We use Theorem 6.1 to work out the optimal supply function for the generator.

The effective response region is

Ψ = {(q, p) : q ≥ 0, 0 ≤ p ≤ 5 : 0.5− p+ 0.5 log(1 + p) ≤ q ≤ 4− p+ 0.5 log(1 + p)}.

The first step is to calculate optimal supply functions S1(p) and S2(p) which corresponds to

C(q) = 1
20q

2 and C(q) = 1
2q
2 − 0.45 respectively. We have,

D0
A(p) =

1

2(1 + p)
− 1.

Substituting D0
A(p), C

0(q) = 1
20q into (6), we have

(p− 0.1q)
µ
1− 1

2(1 + p)

¶
− q = 0.

Solving for q in terms of p in this equation, we obtain

S1(p) = 10p
2p+ 1

22p+ 21
.

Similarly, we can obtain

S2(p) = p
2p+ 1

4p+ 3
.

Since the equations for S1(p) and S2(p) have unique solutions in increasing curves, Assumption

3.1 holds (for Q = 0).

Next we identify optimal supply curves. We start with the point (q1L(0), p
1
L(0)) at which the

optimal supply curve enters the Ψ region. This is the point where the S1(p) curve crosses the

lowest residual demand curve at the boundary of the effective region Ψ. To calculate p1L(0) and

q1L(0) we solve

0.5− p+ 0.5 log(1 + p) = 10p
2p+ 1

22p+ 21
,

and obtain p1L(0) = 0.420; hence q
1
L(0) = S1(p

1
L(0)) = 0.255. Similarly we can identify a point

(1.584, 3.214) where the S2(p) curve crosses the highest residual demand curve at the boundary

of the effective region Ψ.
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Now we can describe the optimal supply curve in the q, p-plane (shown in Figure 5). It starts

from (0.255, 0) and goes vertically to the point (0.255, 0.420) to enter the Ψ region. Then it

follows the S1(p) curve until it crosses q = 1 line at (1, 1.368). It jumps up to the S2(p) curve

and then follows this until it crosses the upper boundary of Ψ at (1.584, 3.214). Finally it goes

vertically up to the price cap at (1.584, 5). We can express this as follows

S(p) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0.255, p ∈ [0, 0.420),
10p 2p+1

22p+21 , p ∈ [0.420, 1.368),
1, p ∈ [1.368, 2.186],
p2.0p+1.04.0p+3.0 p ∈ (2.186, 3.214]
1.584, p ∈ (3.214, 5].

7 Discussion

We have shown how to construct optimal supply functions in the presence of put or call options,

or when generators have generation units with different cost characteristics. It is important not

to miss the fundamental characteristics of the optimal supply functions. Whenever a generator

has sold a call option at a strike price f , some of the generator’s capacity should be bid at the

price f (unless all the capacity is bid below f , or all capacity is bid above f .) On the other

hand when a generator has bought a put option at strike price f , then there is a band around f

of prices such that none of the generator’s capacity is bid within this band. It is not surprising

that a call option should lead to bidding at the strike price, it is less intuitive that a put option

deters bidding near the strike price.
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The same methods can be used to analyse the situation with jumps in the marginal cost of

generation, corresponding to bringing more expensive units on line. As might be expected, the

optimal offer curve has jumps at the quantities which correspond to the (cumulative) capacities

of the different generation units, i.e. the points at which the marginal cost of generation has

discontinuities.

The focus of this paper is on the impact of non-smoothness of the profit function on the

optimal supply function of a single generator without considering the reaction of other genera-

tors. Nevertheless an important question is the existence of Nash supply function equilibrium

when generators hold option contracts or have non-smooth costs. As we mentioned earlier a

significant problem is that when one generator’s supply curve contains a horizontal segment or

a vertical segment, then the residual demand curve for another generator is no longer strictly

decreasing and continuously differentiable. In this case ψ is not continuously differentiable.

Anderson and Xu [7] investigated this situation and showed that there may be no optimal

supply function, at least when generators are able to bid at any price. This is because a

generator can benefit by undercutting the other generator’s price by � , which can be arbitrarily

small. Anderson and Xu also showed that an �-optimal supply function may exist under such a

circumstance (for a detailed discussion, see [7]). The problem occurs when one of the generators

uses a supply function with a jump in quantity at a particular price. This analysis suggests

that there may be a difficulty in obtaining any equilibrium when generators sell call options. In

practice the situation is complicated by restrictions on prices (e.g. to whole number of cents)

and other market rules (in the case of Australia a set of 10 prices at which a generator can bid

needs to be made in advance, and then remains fixed for the day, see [5]).

In the case when there is jump in price at a particular quantity (as happens with changes in

marginal cost, or a generator buying a put option) then it might be possible that an equilibrium

exists. Baldick, Grant and Kahn [10] give some discussion of piecewise affine supply function

equilibrium. A fuller investigation of equilibrium models in these circumstances is a topic for

further research.

An alternative viewpoint is to consider approximate Nash equilibria in markets with many

generators. In this case the impact of any single generator’s offer of quantity or price is negligible.

Hence it may be reasonable to take DA as a smooth approximation of the actual residual demand

curve.
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Appendix

Proof of Lemma 3.2. Since S(p,Q) and S(p, 0) are strictly increasing functions, we have

(p− C 0(S(p,Q)))(−D0
A(p))− S(p,Q) +Q = 0, for all p ∈ [pL(Q), pU (Q)], (15)

and

(p− C 0(S(p, 0)))(−D0
A(p))− S(p, 0) = 0, for all p ∈ [pL(0), pU (0)]. (16)

Subtracting (16) from (15), we have, for all p ∈ [pL(Q), pU (Q)]
T
[pL(0), pU (0)],

(C0(S(p, 0))− C 0(S(p,Q)))(−D0
A(p)) + (S(p, 0)− S(p,Q)) +Q = 0. (17)

Suppose that S(p, 0) ≥ S(p,Q) for some p ∈ [pL(Q), pU (Q)]
T
[pL(0), pU (0)]. Then as C is convex

and differentiable and D0
A ≤ 0, the first term in (17) is non-negative. Since Q > 0, this gives a

contradiction and the conclusion follows. ¤

Proof of Theorem 4.1. Let s denote the graph of supply function S defined as in (9) (see

Figure 6) and es be an arbitrary non-decreasing supply curve defined over [0, qM ]× [0, pM ]. We
need to compare the expected return based on s with that based on es. We want to achieve this
by applying the classical Green’s theorem (which shows that the line integral of RQ with respect

to dψ along the boundary of a region is exactly the area integral of ZQ in that region).
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Figure 6: Optimal supply curve with a call option

Let L and U denote respectively the points where s enters and exits Ψ. Let A and B denote

the points where the lowest residual demand curve intercepts the p-axis and the q-axis, and E

and F denote the points where the highest residual curve hits the p = pM line and the q = qM

line.

Observe that we can always regard point L as being located on the lowest residual demand

curve between A and B since if qL(0) = 0 and pL(0) > 0, then we can regard the curve as

entering Φ at A and hence set L = A; on the other hand if qL(0) > 0 and pL(0) = 0, then we can

regard the curve s as entering Φ at B and hence set L = B. Using a similar argument, we can

regard point U as being located on the highest residual demand curve between points E and F.

Similarly, we assume that es enters Φ at L0 which is located on the lowest residual demand curve
between points A and B and exits at U0 which is located on the highest residual demand curve

between points E and F.

We write A for the area surrounded by s, es and the boundary of Ψ (notice that this may
consist of two or more different regions if s and es cross). The area A may lie entirely on one

side of the p = f line, then we can apply Green’s theorem directly since R1 is continuously

differentiable (coinciding either with R0 or with RQ over the entire area).

Suppose that A lies on both sides of the p = f line as in the figure. We cannot apply Green’s

formula straightforwardly since in this case R1 is not differentiable at p = f , so we split the

area into two, above and below the p = f line.
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In the area below the p = f line, R1 = R0(q, p). We can apply Green’s theorem to the

area by extending Z0 values upwards to the p = f line. We can deal with the area above the

p = f line in a similar way (by extending ZQ values downwards to the p = f line). Note that in

applying the theorem, we need to add or subtract a line integral of R1 with respect to ψ(q, p)

along the segment of the p = f line located in the area. These items do not appear as they

cancel each other.

Thus we obtain

v(s)− v(es) =

Z
LL0

RQ(q, p)dψ(q, p) +

Z
U 0U

RQ(q, p)dψ(q, p)

+

Z Z
A,p≤f

sign(q, p)Z0(q, p)dqdp+
Z Z

A,p≥f
sign(q, p)ZQ(q, p)dqdp, (18)

where sign(q, p) equals 1, 0 and −1 respectively if (q, p) is located above, on or below the curve
s.

Since Z0(q, p) > 0 for (q, p) located above s and Z0(q, p) < 0 for (q, p) located below s, we

have Z Z
A,p≤f

sign(q, p)Z0(q, p)dqdp ≥ 0.

On the other hand, since L and L0 are on the lowest residual demand curve, and ψ is constant

on the curve, then Z
LL0

RQ(q, p)dψ(q, p) = 0.

Similarly Z Z
A,p≥f

sign(q, p)ZQ(q, p)dqdp ≥ 0,

and Z
U 0U

RQ(q, p)dψ(q, p) = 0.

This shows v(s)− v(es) ≥ 0. Thus s is globally optimal. ¤

Proof of Theorem 5.1. We begin by showing the existence of an optimal solution. This follows
from a similar argument to the result of Anderson and Xu who show that the supply functions,

when treated as continuous curves in the (q, p) plane, are compact under the Hausdorff metric

[4, Lemma 2]. In order to show the existence of an optimal solution, we need the continuity

of the objective function (under the Hausdorff metric). Anderson and Xu prove this under

the additional restriction that the profit function R(q, p) is continuously differentiable. See [4,

Theorem 3]. However in our case we only have a piecewise continuously differentiable profit

function R. Observe, however, that the result we require is that a small perturbation of the

supply curve under the Hausdorff metric results in a small change in objective.

The difference between the two objectives is given byZ
C
R(q, p)dψ(q, p) =

Z Z
A
Z(q, p)dpdq
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Figure 7: A perturbation of the supply curve

where C is the closed curve formed by the difference between the perturbed and original supply
curves, and A is the region between them. Here we have extended the application of Green’s

theorem [16] by splitting the region A into the parts above and below the strike price f and

applying Green’s theorem separately to the two parts. Since Z is bounded the right hand side

approaches zero as the perturbation gets smaller, which is enough to establish the existence of

an optimal solution.

When treated as a curve in the (q, p) plane the supply curve must cross the line p = f

either (a) in a vertical section, or (b) in a strictly monotonically increasing segment (which is

not vertical), or (c) with a section that is horizontal. To prove the result we need to show that

options (b) and (c) cannot occur.

Suppose (b) occurs. Then the supply curve has the characteristic of being strictly increasing,

but not vertical, on either side of the p = f line. Hence, from Lemma 5.1 the supply curve must

follow the Z = 0 curve on both sides of the p = f line. Now from Assumption 3.1 there is just a

single Z = 0 curve both above and below p = f corresponding to S(p, 0) and S(p,Q). But from

Lemma 3.2 S(f,Q) > S(f, 0) giving a contradiction.

Now suppose that (c) occurs. Suppose that the horizontal section of the optimal supply

curve is from (q1, f) to (q2, f), q1 < q2 as shown in Figure 7. Let S0(f) = α and SQ(f) = β

where α < β. Since the supply curve is not horizontal immediately below and to the left of

(q1, f) we can apply a perturbation at this point as shown in the Figure (with the perturbation

parameterized by δ > 0). Since the supply curve is optimal, using Green’s theorem shows that

the area integral of ZQ over the region between the curve and its perturbation is non-positive.

Letting the size of the perturbation, δ, go to zero and using the continuity of ZQ shows that

ZQ(q1, f) ≤ 0. Hence, from Assumption 3.1, q1 ≥ β.
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Similarly we can apply a perturbation at (q2, f) to show that q2 ≤ α which is a contradiction.

¤

Proof of Theorem 6.1. We begin by establishing that S is monotonic and well-defined. To do
this we have to establish that pui < pli+1, i = 1, · · · , n− 1. This will show that the supply curve
jumps up at the break points qi when considered in the q, p-plane. Notice that, since (qi, pui ) is

on the optimal supply curve Si, Zi(qi, p
u
i ) = 0. Moving across the qi boundary, from Zi to Zi+1,

involves replacing C 0i(qi) with C
0
i+1(q

+
i ) which decreases the value of Z. Hence Zi+1(q

+
i , p

u
i ) < 0.

Thus the point (qi, pui ) (or strictly points (q, p
u
i ) with q approaching qi from the right) is in the

region below the Zi+1(q, p) = 0 curve, and hence pui < pli+1 as required.

The graph of S divides the effective response region Ψ into two in the q, p-plane: Ψ1 is

located above and to the left of the curve and Ψ2 is located below and to the right. We show

that Z(q, p) > 0, for (q, p) ∈ Ψ1 (and not on the graph of S) and Z(q, p) < 0 for (q, p) ∈ Ψ2
(and not on the graph of S). Now Z(q, p) = Zi(q, p), for qi−1 < q ≤ qi. So the result we require

is immediate, since it holds for each region q ∈ (qi−1, qi) separately.

The unique optimality of S(p) now follows from similar arguments to those given earlier

using Green’s theorem. We omit the details. ¤
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