

# **AUPEC'04** Brisbane, September 2004

Using a market game as a tool for teaching strategic behaviour in an electricity industry restructuring course

Thai D. H. Cau\*, Hugh Outhred\*\* & Iain MacGill\*\*

\*Australian Graduate School of Management \*\*Centre for Energy and Environmental Markets (CEEM) and School of Electrical Engineering and Telecommunications

University of New South Wales, Sydney, Australia www.ceem.unsw.edu.au



# Electricity industry restructuring – useful models



AUPEC'04 – A Market Game for Teaching Strategic Behaviour in a EI Restructuring Course



# Markets in the restructured electricity industry



AUPEC'04 – A Market Game for Teaching Strategic Behaviour in a EI Restructuring Course



# Economic (+ perhaps commercial) models for spot mkts

(from Bardak, "Pool prices in the NEM", 2003)

NSW SRMC 2002



AUPEC'04 – A Market Game for Teaching Strategic Behaviour in a EI Restructuring Course



## Strategic behaviour in spot mkts

- Strategic behaviour is
  - Trading actions of generators that can profitably influence spot prices
    - Individual market power of a single firm
    - Tacit collusion of a group of firms
- Typically exercised by
  - Withholding generation
  - Setting their mkt offers above marginal cost
- The realities of strategic behaviour in actual mkts driven by
  - Mkt design (rules) + structure (players)
  - opportunities: eg. summer peak days, contingencies
  - Particular players



# Teaching tools for strategic behaviour in spot mkts

- A range of teaching tools available
  - eg. Finland, Mexico, US...
- UNSW post-grad courses in EI restructuring
  - Power systems operation and control
    - Operation of existing system (20 ms => year)
  - Electricity industry planning and economics
    - Planning for investment (year =>)
- Spot mkts play a key role in both operation + investment
  => Simple spot mkt tool developed for UNSW course



# Tool design

- Design criteria were simplicity + clarity
- Model assumes
  - Competition only on supply side amongst generators deterministic demand + no DSR
  - Transmission network not specifically modelled loss factors ok
  - No unit commitment or de-commitment
  - No forward contracts in place revenue only from spot mkt
  - No ancillary services mkts
  - Each generating firm has a portfolio of units each unit with constant incremental variable cost + max output
  - Firms offers to mkt up to 10 (price, quantity) \$/MW pairs
  - Mkt coordinator solves dispatch to clear mkt at minimum cost
- Both single and day-ahead spot mkts supported



## Implementation

- Implemented via two Excel Workbooks
  - Coordinator
    - Mkt clearing mechanism
    - Economic dispatch to benchmark mkt outcome against perfectly competitive response
    - Game reports concentration (HHI) + monopoly (Learner) indexes
  - Firms scenario analysis tool
    - From an estimate of competitors' behaviour
    - ⇒Tool generates residual demand curve so that firm can explore strategic offer options (Excel solver can be used although not necessarily global optimum)



## How the game is played

- Game process
  - Mkt coordinator establishes structure (firms + their portfolios)
  - Firms submit offers to coordinator
    - Coordinator clears mkt + informs all Firms of
      - Dispatch price + quantities for all firms
      - Offers of all firms
      - Profits of all firms
    - Game continues

Communications undertaken via email



#### Some games

- Six firms 'staffed' by UNSW post-grad students
- Motivation bonus class marks according to firms ranking
- Four games over 14 weeks of class

|                                            | Hourly spot<br>mkt | Day-ahead mkt with 24<br>one-hour trading intervals<br>over daily demand profile |
|--------------------------------------------|--------------------|----------------------------------------------------------------------------------|
| All firms with identical portfolios        | 1                  | 2                                                                                |
| 3 large firms with<br>mkt power, 3 without | 3                  | 4                                                                                |



#### Some results

- Identical portfolios + no individual mkt power (not all participants reqd to be dispatched in order to meet demand)
  => almost no tacit collusion emerges
- Identical portfolios + some limited individual mkt power
  => collusion for 3 firms only but not if all six firms competing in mkt
- A mix of portfolios, with some having mkt power
  => fairly cautious use of mkt power with only limited price impacts
- Why such little enthusiasm for exercising mkt power?
  - Engineering students rather than Commerce + Economics students?
  - **OR**?



## A rational response to the bonus structure

- Student firms earn bonus marks for ranking amongst firms
- A firm exercising mkt power has to withdraw generation or increase offer price above marginal costs
   => generally leads to higher mkt price but reduced dispatch
   => other firms do better than the strategic firm
- In actual mkts, firms are motivated by profits rather than just strict rankings



## Conclusions + future work

- Existing tool a useful introduction to strategic behaviour in spot mkts, also familiarises students with spreadsheet model
- Possible future work
  - Games with stochastic demand
  - Day-ahead mkts with multiple offers + rebidding
  - Web-based implementation



# Centre for Energy + Environmental Markets (CEEM)

#### Established...

- to formalise growing interest + interactions between UNSW researchers in Engineering, Commerce + Economics, AGSM...
- through UNSW Centre providing Australian research leadership in interdisciplinary design, analysis + performance monitoring of energy + environmental markets, associated policy frameworks
- in the areas of
  - Physical energy markets (with an initial focus on ancillary services, spot market + network services for electricity + gas)
  - Energy-related derivative markets (financial + environmental including interactions between derivative and physical markets)
  - Policy frameworks and instruments in energy and environment
  - Experimental market platforms and AI 'intelligent agent' techniques to aid in market design
  - Economic valuation methodologies



### For more information.....

# www.ceem.unsw.edu.au

AUPEC'04 – A Market Game for Teaching Strategic Behaviour in a EI Restructuring Course