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Abstract Firms compete in supply functions when they offer a schedule of prices and quan-

tities into a market; for example, this occurs in many wholesale electricity markets. We study

the equilibrium behaviour when firms differ, both with regard to their costs and their capac-

ities. We characterize the types of equilibrium solution that can occur. If the demand can

be low enough for it to be met economically with supply from just one firm, then the supply

function equilibria are ordered in a natural way. Moreover, there can be at most one supply

function equilibrium with the property that all but one of the firms are at their capacity

limits when demand is at its highest level. We also propose a new numerical approach to find

asymmetric supply function equilibria. We use a scheme which approximates general supply

function equilibria using piecewise linear supply functions and a discretization of the demand

distribution. We show that this approach has good theoretical convergence behaviour. Fi-

nally we present numerical results from an implementation of this method using GAMS, to

demonstrate that the approach is effective in practice. Our method is superior to approaches

based on numerical methods for ordinary differential equations, or on iteration procedures in

the function space of admissible supply functions.

1 Introduction

In many situations firms compete by offering a schedule of quantities and prices into a market

rather than using a single strategic variable of quantity or price. In this paper we analyse

supply function equilibria which occur in this environment. The first complete analysis of such

equilibria was carried out by Klemperer and Meyer [25] who recognized that supply function

equilibria can exist when there is demand uncertainty, so that firms specify their supply
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functions before they know the demand. Supply function equilibria (SFE) have been used

extensively in the analysis of wholesale electricity markets as well as in other environments

([27, 1]). However there are two significant problems with this approach. First in general there

may be a whole family of different equilibria, giving rise to an equilibrium selection problem.

Second it has often proved hard to produce an equilibrium solutions, either analytically or

numerically, even when they are known to exist. We make a contribution to both these

problems here. We will show that though in general there may be a whole family of alternative

equilibrium solutions, these will be ordered and in many cases there will be a unique solution to

the SFE problem with capacity constraints. Moreover, we demonstrate a new robust numerical

technique for solving the SFE problem for an oligopoly, and in so doing we hope to make this

approach more useful in practice. Our methods go beyond prior work in this area since we

need make very few assumptions on the characteristics of the demand and cost functions.

In our model each firm specifies their supply quantity as a function of the price. A supply

function is always required to be non-decreasing, so that the higher the market price, the more

commodity a firm is willing to sell. After the simultaneous announcement of supply functions

a stochastic demand occurs and the market clears at a single spot price which is then the

price paid to each firm for the quantity they supply. In actual markets there are often other

restrictions: for example there may be a restriction on the range of prices for which the supply

function is specified (e.g. a price cap).

Wholesale electricity markets have been the main focus for research on supply function

equilibria, with Green and Newbery [19] being the first to apply this approach to firm offers

in the England and Wales market. Despite the problems of dealing with equilibria in supply

functions, most authors regard this as the most appropriate framework for an equilibrium

analysis. Cournot models have been used by a number of authors, (e.g. [8, 12]), but this has

been primarily because of their flexibility and tractability. The case for preferring a supply

function approach rests on what happens in actual electricity markets in which firms bid

schedules of prices and quantities, rather than quantities alone. For more discussion on some

of the modelling issues see [24].

The existence and computation of supply function equilibria in general cases has attracted

a great deal of research attention. Klemperer and Meyer discussed a case with identical convex

cost functions for each firm and a concave demand function. They showed the existence of a

family of SFE in this case. Electricity demand is almost completely insensitive to spot market
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price in the short term and [28] and [3] addressed the case of SFE with stochastic demand

which is independent of price, where each firm has an identical cost function. Both papers

provide closed-form formulae for strictly increasing supply function equilibria when there are

no capacity constraints or other operating constraints. Holmberg [20] has shown that, when

demand is inelastic and capacity constraints bind with a positive probability, there can only

be one SFE. Anderson and Xu [6] extended the work of Klemperer and Meyer to deal with

hedging contracts, capacity constraints and price caps, which are all commonplace in electricity

markets. However all of this work is restricted to symmetric solutions in which the firms are

identical and each offer the same supply function. Challenges remain for the supply function

equilibrium models when the firms are asymmetrical (having different cost functions) and have

operating constraints such as capacity limits.

The simplest form of asymmetric problem arises when firms have identical cost functions

but have different capacities. Problems of this form, in which marginal cost is constant,

are considered by Genc and Reynolds [16] and by Holmberg [21]. The only case in which

an asymmetric supply function equilibrium can be easily found is one in which the supply

functions are linear (strictly affine). This form of SFE can be found whenever the cost functions

are quadratic (linear marginal cost) and the demand is linear. However there may also be non-

linear solutions under these conditions, which will be difficult to find analytically. Green(1996)

[17] and Green (1999) [18] have shown how affine SFE can be used in analyzing different aspects

of the England and Wales market when it operated under a pool system.

It is natural to consider piecewise linear supply function equilibria in which different price

ranges have different linear solutions. This approach can be used to approximate more general

functional forms. Unfortunately such solutions cannot always be found, since the supply

functions determined in this way may decrease in moving from one price interval to the next.

Moreover capacity limits are difficult to incorporate in this framework. Nevertheless the

approach has been used successfully by Baldick et al [9] and forms the basis of the numerical

approach of Rudkevich [30]

When we come to consider algorithms for the numerical estimation of supply function

equilibria there are a number of options. As we will see later the equilibrium conditions pro-

duce coupled first order differential equations, and we can use the standard approaches for the

solution of such equations. However there are some difficulties. The primary problem is that

a solution can be derived from initial conditions, but infeasibilities in the solution can easily
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occur, either through a supply function starting to decrease or because the quantity exceeds

a capacity limit. Thus we may need to search among potential initial conditions to locate a

feasible solution. Another difficulty arises because the equations are poorly conditioned, in

particular an ODE solver may encounter difficulties when the system becomes close to sin-

gular, which happens at the lowest point of the supply function where the quantity is close

to zero and we expect the price to approach the marginal cost of supply. Finally when using

the ODE approach we need to be careful that the solution of the ODE system is actually an

equilibrium point rather than being just locally stationary. That is we need to check that the

supply function offered by the i’th firm is optimal given the offers from the other firms.

There are a number of alternative approaches that have been suggested. For asymmetric

firms, Baldick and Hogan [10] develop an iterative scheme based on piecewise affine solutions.

At each stage the existing set of supply functions are moved towards the best piecewise affine

response to the other firms’ offers. Day and Bunn [13] use a similar approach to computa-

tionally determine equilibrium solutions, but they use a step length of 1 in their iterative

procedure which may be responsible for the cycling that they observe.

Baldick and Hogan [11] investigate the use of polynomial approximations. They show

that there are significant difficulties with this approach, particularly if it is required that the

equilibria are stable - by which they mean that a small perturbation by one player will still lead

to convergence if each player repeatedly responds according to its best response to the current

offers of other players. As has been shown by Rudkevich [29], when players are restricted to

affine supply functions and use a Cournot adjustment process there is a rapid convergence to

the equilibrium solution.

Rudkevich [30] shows how a piecewise linear optimal response can be developed allowing

for both horizontal and vertical segments in a grid framework. He also discusses the difficulties

of finding an SFE and proposes a method in which each player observes prices and from these

develops a piecewise linear approximation to the supply function of its rivals. This approach

has been found effective in practice. Holmberg [22] gives a numerical procedure for finding a

solution. His approach uses numerical integration to solve the system of ODEs and searches

for feasible solutions, by varying the values for the prices at which the capacity constraints

are reached for each firm.

In this paper we begin in Section 2 by discussing some fundamentals of the equilibrium

model and characterizing the equilibrium solutions that arise. We show that discontinuities
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in the supply functions can only occur at a price at which one of the other firms begins to

supply. We also show that if the lowest demand level has only one firm supplying, then there

is an ordering between equilibrium solutions, and at most one equilibrium solution where all

but one of the firms reach their capacity for the highest level of demand. Section 3 formulates

the approximation scheme, in which we take a discretization over demand shocks, rather than

over price or quantity. We establish a convergence result for this discretization. Section 4 gives

some implementation details for the approximation scheme and presents numerical examples.

2 Characterizing equilibrium solutions

Our basic model has n firms. Each firm i has a maximal capacity denoted by q̄i. We let

ci(x) be the cost for firm i of producing an amount x and we assume that ci(x) is convex and

differentiable. Furthermore, we assume that the marginal cost is always positive, so c′i(0) ≥ 0,

for i = 1, . . . , n. It is convenient to assume that each firm has a different initial marginal cost

of supply, and by reordering the firms if necessary we will suppose that c′1(0) < c′2(0) < ... <

c′n(0).

We suppose that demand is given by a function of the form D(p, ε) = D(p) + ε. The

price sensitive element of the demand, D(p), is strictly decreasing, smooth and concave. The

demand shock ε, which is the stochastic element in the demand, has some distribution with

cumulative distribution function F (ε). Moreover we assume that this distribution has positive

density throughout the interval on which it is defined: specifically we suppose that there is a

density function f with f(x) > 0 for x ∈ (εmin, εmax), where εmin is the lowest demand shock

that may occur and εmax is the largest.

We will assume that there is a given price cap p̄, but if there is no explicit price cap we

may take p̄ to be the price where D(p̄)+εmax = 0. At this price the maximum demand is zero

and so the market can only clear at this price in the trivial case that all the supply functions

are identically zero. We will suppose that prices are always greater than zero (even though in

some electricity markets negative prices can occur).

The supply function for firm i is a function si : [0, p̄] → [0, q̄i]. We will assume that supply

functions are non-negative, non-decreasing and piecewise smooth (specifically we assume each

si(·) has both left and right derivatives for all p ∈ (0, p̄)).

In fact, once we consider supply function equilibria, some forms of ‘bad’ behaviour will be

ruled out. For example we will show (Theorem 2) that the supply functions can have only
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finitely many jumps. Thus it may be possible to relax the requirement of piecewise smooth

supply functions and instead use the conditions arising from the equilibrium to establish good

behaviour. For example, for an initial value problem, x′(t) = f(t, x(t)), x(t0) = x0, if x(t) is a

solution in the distribution sense, x(t) is square-integrable, and f(t, x) is locally Lipschitz in

x, then x(t) is at least continuously differentiable (see [26]). However we choose the simpler

approach of assuming piecewise smoothness, which is not a restriction in practice. Notice that

our assumption is weaker than Klemperer and Meyer [25] who consider only supply functions

that are twice continuously differentiable.

Throughout this paper we will use the notation g(x−) and g(x+) for limδ↓0 g(x − δ) and

limδ↓0 g(x + δ) when these exist; both quantities are well defined when g is a supply function

since this is monotonic. In the same way we will write g′(p−) = limδ↓0 g′(p − δ) and g′(p+) =

limδ↓0 g′(p + δ) where these exist.

After the supply functions have been chosen, the stochastic demand is realized. Thus a

particular value ε∗ of the demand shock ε becomes known and the market clears at a price

p∗ such that D(p∗) + ε∗ =
∑

j sj(p
∗) and each firm i supplies an amount si(p

∗). Thus firm i

earns a profit of p∗si(p
∗) − ci(si(p

∗)).

We need to be careful however if the supply functions are discontinuous (which corresponds

to a range of quantities of supply being offered all at the same price). In this case the market

clears at a price p with
∑

j sj(p
−) ≤ D(p) + ε∗ ≤

∑
j sj(p

+). If just one supply function,

say si, is discontinuous at p then the other firms meet their part of the demand sj(p), j 6= i,

and firm i meets the residual demand D(p) + ε∗ −
∑

j 6=i sj(p). When more than one firm has

a discontinuous supply function at the same price then there is no longer a single allocation

of demand to firms. Later we will show that in the equilibrium of concern to us this cannot

happen, but in case it does happen we need to specify a rule for sharing demand between

firms offering at the same price (see [7]). In our case we assume that there is a preference

order between the firms with demand at any price being met first from firm 1, then firm 2,

etc.

To find the best response function for firm i , given the supply functions for the other firms

sj, j 6= i, we can ask what choice of price will give the highest profit to firm i? If the market

clears at a price p then the amount supplied by i is given by si(p) = D(p, ε)−
∑

j 6=i sj(p) and

this gives a profit of

πi(p, ε) = p[D(p) + ε −
∑

j 6=i

sj(p)] − ci(D(p) + ε −
∑

j 6=i

sj(p)).
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If the supply functions {si(p)}n
i=1 in equilibrium are smooth, and there are no other constraints,

then the optimal choice of price for firm i, is achieved when

∂πi(p, ε)/∂p = [p − c′i(D(p) + ε −
∑

j 6=i

sj(p))][D′(p) −
∑

j 6=i

s′j(p)] + [D(p) + ε −
∑

j 6=i

sj(p)](1)

= [p − c′i(si(p))][D′(p) −
∑

j 6=i

s′j(p)] + si(p) = 0.

Thus we obtain the following first order optimality conditions (see also [25, p.1251])

si(p) = [p − c′i(si(p))] [
∑

j 6=i

s′j(p) − D′(p)], i = 1, . . . , n. (2)

If the sj are continuous at p, but not smooth, then we need to replace (2) with

[p − c′i(si(p))] [
∑

j 6=i

s′j(p
−) − D′(p)] ≤ si(p) ≤ [p − c′i(si(p))] [

∑

j 6=i

s′j(p
+) − D′(p)].

If si(p) satisfies these inequalities for a given p, then (subject to a global optimality con-

dition) firm i earns the maximum profit possible when the demand shock is the ε which

corresponds to this market clearing price. If the condition holds for all p, then the the profit

for firm i is optimal whatever the demand shock, and consequently whatever the distribu-

tion F (·).

The optimal choice for si(p) can be constrained either by the allowable range of prices

or by a capacity constraint, so the first order optimality conditions hold only when, at the

solution, 0 < p < p̄ and 0 < si(p) < q̄i. An important case arises when all but one of the

supply functions are either zero or at their capacity limits in a range (p − δ, p + δ), then if si

is the supply function that is not constrained, its value is given by

si(p) = −
(
p − c′i(si(p))

)
D′(p). (3)

In effect firm i is acting as a monopoly over this range of prices.

There is a further complication which arises from the restriction that the supply functions

are non-decreasing. When the best response function has negative slope we are no longer able

to solve the problem locally for each p. Instead we will need to use a supply function which is

constant over an interval. In this case the choice of supply function is no longer optimal for any

ε, and instead we must weigh up losses and benefits for different demand shock realizations.

The consequence is that we will seek a supply function that is optimal for the expected profit:

the choice of supply function is no longer independent of the demand shock distribution, F ,
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and the first order optimality conditions given above will not hold. Solving the best response

problems which then arise is more complex, and is fully described in Anderson and Philpott [4]

and Anderson and Xu [5].

We say that a supply function si(p) is strongly optimal, as a response to a set of supply

functions sj(p), j 6= i, if given any demand realization, the amount supplied by firm i under

this demand realization gives firm i the highest achievable profit subject to constraints on price

and capacity. We use the term strong equilibrium to refer to an equilibrium in which each

supply function is piecewise smooth and strongly optimal given the other supply functions.

In this paper we will only consider strong equilibria.

The number of possible supply function equilibria will be constrained according to the

range of the supply shocks: in general there are fewer equilibrium solutions possible when

the demand has a wide range of possible values. For a specified supply function equilibrium

we can find the minimum and maximum values of price which occur - we call these pmin and

pmax respectively (corresponding to demand shocks εmin and εmax). The values of the supply

functions outside the range (pmin, pmax) are irrelevant and we cannot say anything about the

characteristics of the supply functions outside this range.

We will proceed in stages in our characterization of the SFE. We begin by showing that

in a strong equilibrium no supply is offered at prices below marginal cost - which translates

into the following statement about supply functions.

Lemma 1 In a strong equilibrium,

si(p) = 0 if and only if pmin < p ≤ c′i(0);

c′i(si(p)) < p for c′i(0) < p ≤ pmax.

Proof Choose ε such that the market clears at price p with si(p) > 0 and p ≤ c′i(0). Then

consider increasing the choice of p for this ε fixed. We have

π′
i(p

+) = [p − c′i(si(p))][D′(p) −
∑

j 6=i

s′j(p
+)] + si(p) > 0

since p ≤ c′i(0) ≤ c′i(si(p)), using the convexity of c, and D′(p) < 0. Hence increasing p

increases profits, which contradicts the strong optimality of si. The conclusion is the same

even if there is a discontinuity in some sj at p. On the other hand if there is some demand

shock ε such that the market clears at price p with si(p) = 0 and p > c′i(0), then π′
i(p

−) < 0

showing that decreasing p will be advantageous; again giving a contradiction.
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The second part follows similarly. If c′i(0) < p ≤ c′i(si(p)), then si(p) > 0 and π′
i(p

+) > 0

contradicting the optimality of this choice of p. �

The next step is to show that the solutions are continuous (with some specific exceptions).

The argument is roughly as follows. Suppose that si(pA) jumps from qa to qb. The consequence

is that there is range of demands at which the market will clear at pA. Hence there is a non-

zero probability of a demand occurring in this range and there is a jump in the profit for some

other firm by offering at a price just below pA in comparison to just above pA. This is enough

to show that this is not an equilibrium (this type of situation is described in more detail in

[7]). The result below makes this more precise.

Theorem 2 In a strong equilibrium, if si(p
−
A) < si(p

+
A) then (a) all firms k, k 6= i, for which

sk(pA) > 0 are at their capacity limit, i.e. sk(pA) = q̄k and (b) there is some firm j 6= i with

pA = c′j(0)

Proof We begin by showing that there cannot be a strong equilibrium with two supply

functions discontinuous at the same price. Suppose otherwise and let {sj(p)}n
j=1 be a strong

equilibrium in which both si and sk are discontinuous at pA. Now consider a demand shock ε

with
∑

sj(p
−
A)−D(pA) < ε <

∑
sj(p

+
A)−D(pA) so that there is an ambiguity in the amount

supplied by i and k. Then from Lemma 1, both c′k(sk(pA)) < pA and c′i(si(pA)) < pA and so

both firms would prefer to have the largest possible supply. The sharing rule gives preference

to one of the firms, say i. Then firm k will improve its profits by choosing a slightly lower

price than pA, which contradicts the fact that this is a strong equilibrium.

Thus to prove part (a) we suppose that we have si(p
−
A) < si(p

+
A) and 0 < sk(pA) < q̄k, with

sk continuous at pA. Thus, from Lemma 1, we have c′k(sk(pA)) < pA. Since supply function

si has a jump at pA, the price will be pA for a range of values of demand shock ε, specifically

for ε between
∑

sj(p
−
A) − D(pA) and

∑
sj(p

+
A) − D(pA). For ε in this range we let

∆(ε) = D(pA) + ε −
∑

j

sj(p
−
A) > 0.

We select a demand shock εA in this range with ∆(εA) small enough so that ∆(εA) < q̄k −

sk(pA) and c′k(sk(pA) + ∆(εA)) < pA (using the continuity of c′k).

We claim that pA is not an optimal price for firm k for demand shock εA given the

other firms’ supply functions. That is, {sj(p)}n
j=1 does not form a strong supply function

equilibrium. In fact, if firm k chooses a price pA − δ, instead of pA, with this demand shock,

9



then its supply changes from sk(pA) to

D(pA − δ) + εA −
∑

j 6=k

sj(pA − δ).

As δ → 0 this quantity approaches sk(pA) + ∆(εA) (which is less than q̄k by construction).

Hence the change in profit for firm k in moving from pA to pA − δ is

(pA − δ)[D(pA − δ) + εA −
∑
j 6=k

sj(pA − δ)] − ck

(
D(pA − δ) + εA −

∑
j 6=k

sj(pA − δ)
)

− pAsk(pA) + ck(sk(pA))

= pA∆(εA) + [ck(sk(pA)) − ck(sk(pA) + ∆(εA))] + O(δ)

≥ [pA − c′k(sk(pA) + ∆(εA))]∆(εA) + O(δ)

since ck is convex. Therefore, this change in profit is positive for δ chosen small enough. This

contradicts the fact that this is a strong equilibrium. Therefore, si(p) cannot have a jump at

pA.

To prove part (b) we show first that there must be at least one firm j 6= i with 0 < sj(p) as

p approaches pA from above or sj(p) < q̄j as p approaches pA from below (i.e. sj increases from

zero to the right of pA or sj hits its capacity bound at pA). If not then there is some interval

(pA − δ, pA + δ) over which the other firms offer a constant quantity (either 0 or q̄j). So over

this interval firm i chooses a price p to maximize πi(p, ε) = p[D(p)+ ε−∆]− ci(D(p)+ ε−∆)

where ∆ =
∑

j 6=i sj(p). This expression has first and second derivatives with respect to p

given by

π′
i = pD′(p) + D(p) + ε − ∆ − c′i(D(p) + ε − ∆)D′(p)

π′′
i = [p − c′i(si(p))]D′′(p) + 2D′(p) − c′′i (si(p))(D′(p))2.

As D′ < 0, D′′ ≤ 0, c′′i ≥ 0 it is easy to see that π′′
i < 0 and so πi is concave and will have

a single optimizing choice of p. Since the functions D and ci are smooth this choice of p will

depend continuously on the demand shock ε, which shows that the supply function will also

be continuous in this interval, giving a contradiction.

So now we suppose that there is no firm j 6= i with 0 < sj(p) < q̄j as p approaches pA from

above, and therefore there is some set of firms (excluding i), with sj(p) < q̄j as p approaches

pA from below and sj(pA) = q̄j. We call this set I(pA).

Using (2), we can write the expressions for the values of si either side of the jump as

follows

si(p
−
A) = −[pA − c′i(si(p

−
A))] [D′(pA) −

∑

j∈I(pA)

s′j(p
−
A)] (4)
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si(p
+
A) = −[pA − c′i(si(p

+
A))]D′(pA). (5)

Since ci is convex, c′i(si(p
−
A) ≤ c′i(si(p

+
A)), and moreover s′j(p

−
A) ≥ 0. Using pA−c′i(si(p

+
A)) > 0,

we can deduce

−[pA − c′i(si(p
−
A))] [D′(pA) −

∑

j∈I(pA)

s′j(p
−
A)] ≥ −[pA − c′i(si(p

+
A))]D′(pA).

But this contradicts our assumption that si jumps up at pA.

Hence we have shown that there is a firm j 6= i with 0 < sj(p) as p approaches pA from

above, and sj(p
+
A) = 0 by (a). Using Lemma 1 establishes that pA = c′j(0) as required. �

One implication of Theorem 2 is that the supply function of each firm in a strong supply

function equilibrium is continuous if all the firms have identical cost functions (see [25], and

for identical cost functions, but different capacity limits, [21]).

Given a strong supply function {si(p)}n
i=1, by Theorem 2, there are at most only finitely

many price points at which some si(·) is not continuous.

We define H(p) = {i : 0 < si(p) < q̄i}, the set of the unconstrained firms at p. Since an

individual firm can only enter H(p) at one price and then leave it at a higher price, if H(p1) =

H(p2) then H must be constant over the interval [p1, p2]. We define H−(p0) = lim
p0>p→p0

H(p)

and H+(p0) = lim
p0<p→p0

H(p). It is easy to see that H+(p), H−(p) are well-defined (provided

{si(p)}n
i=1 is well-defined). Moreover, H(p) is a subset of a set with finitely many elements,

and so there are a finite set of points at which the set function H changes. Notice, however,

that we could have H+(p), H−(p) and H(p) all different if some supply function si hits its

capacity limit at the same price, c′j(0), at which sj leaves zero. Using Lemma 1 we can see

that i /∈ H(c′i(0)), which is the price at which i enters H(p). Hence H(p) ⊂ H−(p).

At a smooth point p of a strong supply function equilibrium {si(·)}, we can rewrite (2) as

∑

j∈H(p)

s′j(p) − s′i(p) =
si(p)

p − c′i(si(p))
+ D′(p) for i ∈ H(p). (6)

This is well defined except when p − c′i(si(p)) = 0. From Lemma 1 we know that this only

occurs when p = c′i(0).

Summing this over i ∈ H(p) we have

(m − 1)
∑

j∈H(p)

s′j(p) =
∑

i∈H(p)

si(p)

p − c′i(si(p))
+ mD′(p)

where m = |H(p)|, the number of firms in H(p). Thus when m > 1, we have

s′i(p) =
1

(m − 1)




∑

j∈H(p)

sj(p)

p − c′j(sj(p))
+ D′(p)


 −

si(p)

p − c′i(si(p))
for i ∈ H(p). (7)
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It will be convenient to write hi(p, x) for the expression x/(p− c′i(x)), so we can rewrite (7) as

s′i(p) =
1

(m − 1)




∑

j∈H(p)

hj(p, sj(p)) + D′(p)


 − hi(p, si(p)) for i ∈ H(p). (8)

Lemma 3 In a strong equilibrium, each supply function si is smooth with all derivatives

except at prices p ∈ Q , where Q is the set of prices at which a firm either starts to supply or

reaches its capacity limit, i.e.

Q = {pX : sj(pX) = q̄j and sj(p) < q̄j for p < pX} ∪ {c′1(0), ..., c
′
n(0)}.

Proof By assumption each si has continuous derivatives except at a finite set of points.

Suppose that one of these points pz is not in the set Q. Then from Theorem 2 each supply

function is continuous at pz. Moreover H+(pz) = H−(pz). As the supply functions are

smooth at prices p which approach pz from either the left or right, the equation (8) applies as

p approaches pz. Since the sj are all continuous and the set H does not change, this implies

that s′i(p
−
z ) = s′i(p

+
z ), which is a contradiction. Thus the only points at which the derivative

of an si is discontinuous are points in Q. Moreover, given equation (8) we can take derivatives

to obtain s′′i (p) in terms of s′j(p) and sj(p), j = 1, 2...n. The process can be repeated to obtain

all the derivatives of si. �

Now suppose that pA and pB are adjacent points in Q and we know si(p
+
A), i = 1, 2, ..., n.

Will this be enough to determine the solution throughout the interval (pA, pB)? To answer

this question we have to know whether the solutions are well behaved near pA. We shall

address this question in a series of lemmas. The first shows that where an ordering between

two different equilibria exists at some price, that ordering persists (at least while the supply

functions involved are continuous.)

Lemma 4 Let {si(p)}n
i=1 and {s̃i(p)}n

i=1 be two supply function equilibria. Suppose that there

is some price p0 with si(p0) ≥ s̃i(p0) for all i with strict inequality for i ∈ H̃(p0) 6= ∅. If

both {si(p)}n
i=1 and {s̃i(p)}n

i=1 are continuous in the range (p0, p1), then, for p ∈ (p0, p1),

si(p) ≥ s̃i(p) for all i with strict inequality for i ∈ H̃−(p).

Proof Note that the ordering si(p) ≥ s̃i(p) for all i and p0 ≤ p ≤ p1 implies that H(p) ⊆

H̃(p) for p0 < p < p1.

Suppose that pX is the supremum of values such that the result holds for p0 ≤ p ≤ pX and

pX < p1. Then there are two possibilities: either (a) si(p) < s̃i(p) for some i for p just larger

than pX and sj(pX) > s̃j(pX) for all j ∈ H̃(pX), or (b) si(pX) = s̃i(pX), for some i ∈ H̃−(p).

12



Suppose first that (a) holds but not (b). In this case we can deduce that si(pX) = s̃i(pX)

and s′i(p
+
X) ≤ s̃′i(p

+
X). If both are at their capacity limit q̄i then both si and s̃i stay at this

level contradicting the supposition. Since we assume (b) does not hold, they must both be

zero, and hence pX = c′i(0).

We consider separately two situations. First, assume that H̃+(pX) = H+(pX). Then

m = |H+(pX)| = |H̃+(pX)| > 1. Otherwise firm i is a monopoly for p > pX near pX , its

supply function is uniquely determined by (3) and (a) cannot occur. So by taking limits in

(8) we have

s′i(p
+
X) − s̃′i(p

+
X) =

1

(m − 1)

∑

j∈H+(pX),j 6=i

(hj(pX , sj(pX)) − hj(pX , s̃j(pX))) .

But hj(p, x) is increasing in x and so the right hand side is positive which contradicts our

assumption.

So now consider the case that H̃+(pX) 6= H+(pX), which implies that there is some firm

l with sl(pX) = q̄l > s̃l(pX). Considering the limits of (6) for {si(·)}, {s̃i(·)} as p → pX and

noting that s′i(p
+
X) ≤ s̃′i(p

+
X), we have

∑

j∈H+(pX),j 6=i

s′j(p
+
X) =

s′i(p
+
X)

1 − c′′i (0)s
′
i(p

+
X)

+D′(pX) ≤
s̃′i(p

+
X)

1 − c′′i (0)s̃
′
i(p

+
X)

+D′(pX) =
∑

j∈ eH+(pX),j 6=i

s̃′j(p
+
X)

by applying the l’Hopital rule to hi(p, si(p)) and hi(p, s̃i(p)). Moreover for each k ∈ H+(pX),

k 6= i, we have sk(p
+
X) ≥ s̃k(p

+
X), and therefore the following inequality by considering limits

in (6):
∑

j∈H+(pX),j 6=k

s′j(p
+
X) ≥

∑

j∈ eH+(pX),j 6=k

s̃′j(p
+
X).

Combining the above two inequalities, we have s′i(p
+
X) − s′k(p

+
X) ≥ s̃′i(p

+
X) − s̃′k(p

+
X) for any

k ∈ H+(pX), k 6= i. Since we are supposing s′i(p
+
X) ≤ s̃′i(p

+
X) this implies s′k(p

+
X) ≤ s̃′k(p

+
X) for

each k ∈ H+(pX). Now observe that the fact that sl(pX) = q̄l implies, from the optimality

conditions,
∑

j∈H+(pX)

s′j(p
+
X) ≥ hl(pX , q̄l) + D′(pX),

and the right hand side of this inequality is strictly greater than

hl(pX , s̃l(pX)) + D′(pX) =
∑

j∈ eH+(pX),j 6=l

s̃′j(p
+
X).

But since s′j(p
+
X) ≤ s̃′j(p

+
X) for each j ∈ H+(pX) and each such j also appears in H̃+(pX)\{l},

we have a contradiction.
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Thus we are reduced to case (b) si(pX) = s̃i(pX), for some i ∈ H̃−(pX). (This includes

the case where si(p) and s̃i(p) both approach q̄i as p → pX from below.) From this we can

deduce that s′i(p
−
X) ≤ s̃′i(p

−
X). We begin by dealing with the case that H̃−(pX) = H−(pX). We

suppose first that for some k ∈ H−(pX), sk(pX) > s̃k(pX), so that not all the supply functions

become equal at the same time. From (8) (here m = |H−(pX)| = |H̃−(pX)| ≥ 2 since the sets

include i, k)

s′i(p
−
X) − s̃′i(p

−
X) =

1

(m − 1)

∑

j∈H−(pX),j 6=i

(hj(pX , sj(pX)) − hj(pX , s̃j(pX))) .

Then each term in the right hand side is non-negative with the term corresponding to firm k

being strictly positive, and so s′i(p
−
X) > s̃′i(p

−
X), giving a contradiction.

Hence all the supply functions become equal at this point, i.e. sj(pX) = s̃j(pX) for each

j. Now by our assumption that H̃−(p) = H−(p), we have H̃(p) = H(p) for p ∈ (pX − δ, pX)

for some δ > 0. Hence by the standard uniqueness result for the ODE system of (2), s and s̃

are the same for p ∈ (pX − δ, pX ), which gives a contradiction.

Hence we are left with the case that H̃−(pX) 6= H−(pX). Then there exist δ > 0 and l

such that sl(p) = q̄l > s̃l(p) > 0 for p ∈ (pX − δ, pX). Furthermore, we choose δ > 0 small

enough so that H(p) and H̃(p) are constant in (pX − δ, pX). Using the same argument as in

the proof of (a) (though without needing to appeal to l’Hopital’s rule) we can deduce from

s′i(p
−
X) ≤ s̃′i(p

−
X) that s′k(p

−
X) ≤ s̃′k(p

−
X) for each k ∈ H−(pX).

Now consider three possibilities:

(i) Suppose that there is some firm l with sl(pX) = q̄l > s̃l(pX). In this case the proof is

the same as the last part in the proof of (a). The optimality conditions for sl(p
−
X) gives

∑

j∈H−(pX)

s′j(p
−
X) ≥ hl(pX , q̄l) + D′(pX)

and the right hand side of this inequality is greater than

hl(pX , s̃l(pX)) + D′(pX) =
∑

j∈ eH(p−
X

),j 6=l

s̃′j(p
−
X)

which induces a contradiction as before.

(ii) Second, suppose that there exists k ∈ H−(pX) such that sk(pX) > s̃k(pX) > 0. Then

∑

j∈H−(pX),j 6=k

s′j(p
−
X) = hk(pX , sk(p

−
X))+D′(pX) > hk(pX , s̃k(p

−
X))+D′(pX) =

∑

j∈ eH−(pX),j 6=k

s̃′j(p
−
X)

which contradicts the facts that s′k(p
−
X) ≤ s̃′k(p

−
X) for each k ∈ H−(pX) and that s̃′k(p

−
X) ≥ 0.
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(iii) Finally, consider the case that neither (i) nor (ii) holds. Thus sj(pX) = s̃j(pX) for all

j ∈ H̃−(pX). Then for p ∈ (pX − δ, pX),

∑

j∈H−(pX)

s′j(p) ≥ hl(p, q̄l) + D′(p) > hl(p, s̃l(p)) + D′(p) =
∑

j∈ eH−(pX),j 6=l

s̃′j(p),

which gives
∑

j∈H−(pX)

[sj(p) − s̃j(p)]′ +
∑

j∈ eH−(pX)\H−(pX),j 6=l

[q̄j − s̃j(p)]′ > 0

for p ∈ (pX − δ, pX ). But from the definition of pX , we have

∑

j∈H−(pX)

[sj(p) − s̃j(p)] +
∑

j∈ eH−(pX)\H−(pX),j 6=l

[q̄j − s̃j(p)] > 0 (9)

for p ∈ (pX − δ, pX). Therefore, the inequality (9) must also hold for p = pX . However this

contradicts sj(pX) = s̃j(pX) for all j ∈ H̃−(pX).

We have shown that neither case (a) or (b) can occur, and so we have established that the

result holds throughout (p0, p1). �

We will say that a set of different equilibria is an ordered family if any two members satisfy

the conditions of Lemma 4 from the point at which they differ. i.e. there is some price p0 with

si(p) ≥ s̃i(p) for all i with strict inequality for i ∈ H̃(p), for each p0 < p ≤ min{pmax, p̃max}.

Now we are ready to prove the uniqueness of the strong supply function equilibrium at

prices p = c′l(0) for l = 2, . . . , n.

Lemma 5 Let p0 = c′l(0) for some 2 ≤ l ≤ n. Then, for given values of {si(p
+
0 )}n

i=1, there is

at most one strong supply function equilibrium {si(p)}n
i=1 in (p0, p0 + ∆) for some ∆ > 0.

Proof Any strong supply function equilibrium satisfies the ODE system (8) and so to prove

the Lemma we show that there is at most one solution to the initial value problem given by:

s′i(p) = 1
(m−1)

(∑
j∈H

sj(p)
p−c′

j
(sj(p)) + D′(p)

)
− si(p)

p−c′
i
(si(p)) for i ∈ H,

sk(p0) = xk, k = 1, . . . , n.
(10)

where H = {i = 1, . . . , n : c′i(0) < p0, 0 ≤ xi < q̄i} ∪ {l}; 0 < xi ≤ q̄i for i < l and xi = 0 for

i ≥ l.

We may assume that |H| > 1, since otherwise firm l is an effective monopoly and there is

a unique solution. We will ignore those firms not in H in the rest of the proof,
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We suppose that there are two equilibria {si(p)}i∈H , {s̃i(p)}i∈H satisfying (10). Let gi(p) =

si(p) − s̃i(p). We shall prove that gi(p) is identically zero (i.e. si(p) = s̃i(p)) for p ≥ p0 and

i ∈ H under the following two complementary cases.

Case 1. Suppose there exists a sequence pm > p0, m = 1, 2, 3, . . . such that limm→∞ pm = p0

and si(pm)− s̃i(pm) > 0 for all m (or si(pm)− s̃i(pm) < 0 for all m, but the proof is the same

by interchanging si(p) and s̃i(p)) Then by Lemma 4, we have si(p) > s̃i(p) for p ≥ pm and

i ∈ H. Therefore we have si(p) > s̃i(p) for p > p0 and i ∈ H . Then, we have

hi(p, si(p)) − hi(p, s̃i(p)) ≤ L[si(p) − s̃i(p)], for i ∈ H, i 6= l, p ≥ p0 (11)

for some constant L > 0 since h′
i(p, y) (the derivative with respect to y) is uniformly bounded

for any y ∈ (s̃i(p), si(p)) (independent of p near p0).

We have a weaker inequality for the l’th component. First note that there is a constant

M > 0 independent of p near p0 such that

1

p − c′l(sl(p))
≤ M

1

p − c′l(0)
.

(and the same inequality holds for s̃l(p)). Otherwise, there exist tk → c′l(0) for k = 1, 2, 3, . . .,

such that 1/(tk − c′l(sl(tk)) > k/(tk − c′l(0). Then we have

sl(tk)

tk − c′l(sl(tk))
>

ksl(tk)

tk − c′l(0)

= k

(
tk − c′l(sl(tk))

sl(tk)
+

c′l(sl(tk)) − c′l(0)

sl(tk)

)−1

> k

(
tk − c′l(sl(tk))

sl(tk)
+ c′′l (yk)

)−1

for some 0 ≤ yk ≤ sl(tk). Since sl(tk)/[tk − c′l(sl(tk))] has a finite, positive limit as tk → c′l(0)

by l’Hopital’s rule, this inequality gives a contradiction. Hence

hl(p, sl(p)) − hl(p, s̃l(p)) = [
1

p − c′l(y
∗)

+
y∗c′′l (y

∗)

(p − c′l(y
∗))2

][sl(p) − s̃l(p)]

≤
M

p − c′l(0)
[sl(p) − s̃l(p)]

for some constant M > 0 independent of p, where y∗ ∈ (s̃l(p), sl(p)).

Replacing hi(p, si(p)) and hi(p, s̃i(p)) by
∑

j∈H,j 6=i s
′
j(p)+D′(p) and

∑
j∈H,j 6=i s̃

′
j(p)+D′(p)

respectively (from (2)), we have

∑

j∈H,j 6=i

g′j(p) ≤ Lgi(p), for i 6= l
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and
∑

j∈H,j 6=l

g′j(p) ≤
M

p − c′l(0)
gl(p)

Summing we have

(m − 1)
∑

j∈H

g′j(p) ≤ L
∑

j∈H,j 6=l

gj(p) +
M

p − c′l(0)
gl(p).

Since gj(p0) = 0 for any j ∈ H, we can integrate this from p0 to p > p0 to obtain

∑

j∈H

gj(p) ≤
L

m − 1

∫ p

p0

∑

j∈H,j 6=l

gj(t)dt +
M

m − 1

∫ p

p0

gl(t)

t − p0
dt

Now, integrating (10) and applying (11), we have

gl(t) ≤
L

m − 1

∫ t

p0

∑

j∈H,j 6=l

gj(p).

Thus

∫ p

p0

gl(t)

t − p0
dt ≤

L

m − 1

∫ p

p0

[
1

t − p0

∫ t

p0

∑

j∈H,j 6=l

gj(s)ds]dt

≤
L

m − 1

∫ p

p0

∑

j∈H,j 6=l

gj(t)dt

since
∑

j∈H,j 6=l gj(t) is nondecreasing in t > p0 due to
∑

j∈H,j 6=l g
′
j(t) = [hl(t, sl(t))−hl(t, s̃l(t))] >

0 as sl(t) ≥ s̃l(t).

Therefore, we have

∑

i∈H

gi(p) ≤
L

m − 1
[1 +

M

m − 1
]

∫ p

p0

∑

j∈H,j 6=l

gj(t)dt

≤
L

m − 1
[1 +

M

m − 1
]

∫ p

p0

∑

j∈H

gj(t)dt.

By Gronwall’s Lemma, and the fact that each gi, i ∈ H, is non-negative, we have

∑

i∈H

gi(p) ≤ 0.

Therefore gi(p) = 0, that is si(p) = s̃i(p) for any i ∈ H, p ≥ p0.

Case 2. Suppose that there exists δ > 0 such that no p ∈ [p0, p0+δ] satisfies the assumption in

Case 1 and that {si(p)}n
i=1 and {s̃i(p)}n

i=1 are equilibria which differ somewhere in the interval

(p0, p0 + δ). We define a sign function as follows I(x) = x/ |x|, for x 6= 0, and I(0) = 0, and

let T (p) =
∑

i∈H I(gi(p)), and θ(p) =
∑

i∈H |gi(p)|. As before we let m = |H|.
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By assumption we have |T (p)| ≤ m − 1 for p ∈ [p0, p0 + δ]. It is easy to show, using the

monotonicity of hi, that I(hi(p, si(p)) − hi(p, s̃i(p))) = I(gi(p)). From (2) we have

hi(p, si(p)) − hi(p, s̃i(p)) =
∑

j 6=i

g′j(p), i ∈ H

and thus

I(gi(p))
∑

j 6=i

g′j(p) ≥ 0, i ∈ H.

Now observe that (m − 1)I(gi(p)) − T (p) has the same sign as I(gi(p)) or is zero, whenever

I(gi(p)) is not zero. On the other hand if I(gi(p)) = 0 then
∑

j 6=i g
′
j(p) = 0. Hence we have

the inequalities

[(m − 1)I(gi(p)) − T (p)]
∑

j 6=i

g′j(p) ≥ 0, i ∈ H.

Summing these inequalities we obtain

∑

i∈H


[(m − 1)I(gi(p)) − T (p)]

∑

j 6=i

g′j(p)


 =

∑

i∈H


g′i(p)

∑

j 6=i

[(m − 1)I(gj(p)) − T (p)]




=
∑

i∈H

g′i(p)[(m − 1)(T (p) − I(gi(p))) − (m − 1)T (p)]

= −(m − 1)
∑

i∈H

g′i(p)I(gi(p)) ≥ 0.

Now θ(p) is Lipschitz continuous, since it is a composite of the absolute value function and

continuously differentiable functions gi(p). Therefore it is differentiable almost everywhere in

the interval [p0, p0 + δ). When it is differentiable at p we have θ′(p) =
∑n

i=1 g′i(p)I(gi(p)) ≤ 0.

This is enough to show that it is non-increasing on the interval (see e.g. Theorem 21.10 in

[33] ). Since θ(p) ≥ 0 and θ(p0) = 0, we have established that θ(·) is identically zero on the

interval [p0, p0 + δ), and thus {si(p)}n
i=1 and {s̃i(p)}n

i=1 do not differ on this interval.

Therefore, the initial value problem (10) cannot have more than one solution. This com-

pletes the proof of the lemma. �

Lemma 6 Let {si(p)}n
i=1 and {s̃i(p)}n

i=1 be two different supply function equilibria. Let p0 6=

c′j(0) for all j = 1, . . . , n be chosen so that p0 < min{pmax, p̃max}, and that {si(p0)}
n
i=1 and

{s̃i(p0)}
n
i=1 are defined and not equal. Suppose that si(p0) ≥ s̃i(p0) for all i, with strict

inequality for all i ∈ H̃(p0). Then both H̃(p0) and H(p0) have two or more elements.

Proof. First we show that H(p0) has at least one element. Suppose, on the contrary, that

H(p0) = ∅. Then we may choose i with si(p0) = q̄i > s̃i(p0). But the optimality conditions
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for si imply

0 ≥ hi(p0, q̄i)+D′(p0) > hi(p0, s̃i(p0))+D′(p0) ≥ hi(p0, s̃i(p0))−
∑

j∈ eH(p0),j 6=i

s̃′j(p)+D′(p0) = 0

which is a contradiction.

(a) Suppose first that H̃(p0) ⊂ {i} (H̃(p0) 6= ∅ following from the assumptions). Because

there is no firm starting to supply at p0, the other supply functions in the equilibrium s̃j(p),

j 6= i are either 0 or at their capacity limits for p ∈ (p0, p0 + δ) for small δ > 0. Because of the

ordering assumed and using Lemma 1, the same is true for sj(p), j 6= i . Hence firm i is the

monopoly firm in both equilibria and the supply function is determined from the monopoly

conditions (3) for p ∈ (p0, p0 + δ) for both si and s̃i. Thus si(p0) = s̃i(p0) and this contradicts

the inequality of the lemma statement.

(b) Now we suppose that H(p0) = {i}. Then we can determine si(p0), using (3). We will

show that there is at most one element in H̃(p0). Suppose otherwise, noting that H̃(p0) ⊆

H̃+(p0) since there are no jumps at p0, we have

∑

j∈ eH+(p0),j 6=i

s̃′j(p
+
0 ) = hi(p0, s̃i(p0)) + D′(p0) < hi(p0, si(p0)) + D′(p0) = 0.

The strict inequality here comes from our assumption that si(p0) > s̃i(p0). However, as all the

slopes are non-negative, this gives a contradiction. But now we have established that H̃(p0)

has no more than one element, then part (a) establishes a contradiction. �

Now we come to the main result describing the equilibria that may exist.

Theorem 7 If

−D(c′1(0)) < εmin < −D(c′2(0)), (12)

then any equilibrium is part of an ordered family, and only the lowest (smallest offers at any

given price) can have the property that all but one of the firms reach their capacity limits prior

to the maximum price.

Proof The condition (12) simply means that at price c′1(0) there is always some demand

(i.e. even when ε = εmin) but when the price reaches c′2(0) there may be no demand for the

lowest demand shock levels. Therefore any equilibrium solution has c′1(0) < pmin < c′2(0).

Suppose that there are two equilibria {si(p)}n
i=1 and {s̃i(p)}n

i=1. We take pV to be the

supremum of prices at which these equilibria are the same. From our previous result on
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uniqueness of solutions we have pV = c′k(0) for some k and at least one of the equilibria has

a jump at pV . Since the two solutions are identical at prices lower than pV they both have

just one firm in the set H(pV ), say i. Swapping the labels for the two equilibria if necessary,

we may suppose that si(p
+
V ) > s̃i(p

+
V ) and hence that s′k(p

+
V ) > s̃′k(p

+
V ). So the conditions for

Lemma 4 apply for p0 just above pV . We will show that these conditions continue to apply

while both supply function equilibria are defined (i.e. up to a price min(pmax, p̃max)).

Let pW be the supremum of prices above pV at which the ordering holds. Suppose that

pW < min{pmax, p̃max}. By the result of Lemma 4 some element of one of the equilibria

{si(p)}n
i=1 or {s̃i(p)}n

i=1 has a jump at pW . Moreover if only si(·) jumps up at pW for some

i, then it is easy to see that the ordering conditions of Lemma 4 continue to apply. Hence

there must be some s̃i(pW ) which is discontinuous, and from Theorem 2, H̃(pW ) = {i}. But

applying Lemma 6 to pW − δ with sufficiently small δ > 0 we have at least two elements in

H̃−(pW ) and so there must be some j with s̃j(p) < q̄j for pW > p → pW and s̃j(pW ) = q̄j.

But by Lemma 4, we have sj(pW ) > s̃j(pW ) which gives a contradiction.

We need to show that {si(p)}n
i=1 cannot have the property of all but one of the firms

reaching their capacity limits prior to the maximum price. Suppose that pmax > p̃max. Then

D(p̃max) + εmax =
n∑

i=1

s̃i(p̃max) <
n∑

i=1

si(p̃max) ≤
n∑

i=1

si(pmax) = D(pmax) + εmax

which contradicts D decreasing, and hence pmax ≤ p̃max.

Now suppose that si(p) = q̄i, for i 6= k for some k, for p ∈ (pmax − δ, pmax). Then for this

choice of p,

0 = hk(p, sk(p)) + D′(p) > hk(p, s̃i(p)) + D′(p0) ≥ hk(p, s̃i(p)) −
∑

j∈ eH(p0),j 6=i

s̃′j(p) + D′(p0) = 0

which is a contradiction. This establishes the result. �

In the case that the lowest level of demand involves more than one firm, so D(c′2(0))+εmin >

0, then we can no longer deduce that the equilibria belong to an ordered family.

Our numerical experiments show that typical problems either have a range of equilibria

each of which has at least two firms below their capacity limits for prices below the maximum,

or they have a single equilibrium with all but one firm reaching their capacity limits prior to

the maximum price. However, as is illustrated in Figure 1. it is possible for a single problem

to have both types of equilibria. The figure shows an equilibrium (solid lines) in which firm 2
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reaches its capacity limit, and another equilibrium (dashed lines) in which neither firm reaches

its capacity limit. This latter equilibrium will be one of a family of nearby equilibria.

2q

1s

2s

2 '(0)c

Figure 1: Possible multiple equilibria when all firm but one have capacity limits

Notice that all of our results are for the case of strictly decreasing demand curves (an

assumption that was used in the proof of Lemma 1). When demand is insensitive to price a

strong equilibrium must always have at least two elements in the set of unconstrained firms

H(p), since in a monopoly situation prices are set as high as possible in the best response

(see (1)). However it can be shown that the ordered family result still holds with each strong

supply function equilibrium having s1(p) = 0, p < c′2(0) and s1(c
′
2(0)) ≥ D + +εmin.

Holmberg [21] shows the uniqueness of supply function equilibrium under conditions: 1)

firms have identical constant marginal cost, but asymmetric capacities; 2) demand is inelastic

and exceed the market capacity with a positive probability. Klemperer and Meyer [25, Propo-

sition 4] show uniqueness when there are identical firms with linear marginal cost functions,

linear demand function and the assumption that the demand shock spreads to infinity. In

both these cases, it is possible to find a closed-form solution for the unique supply function

equilibrium. Theorem 7 establishes the extent to which these results extend to the much more

general situation considered here.

3 Approximation of supply function equilibria

The results we have given allow us to describe the equilibrium solutions that can occur. Now

we turn to the numerical calculation of an asymmetric equilibrium. Most researchers have

approached this problem through a discretization over prices. We will take a different approach
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and look instead at an approximation based on a discretization over possible demand shocks.

Thus we approximate the demand shock distribution using a demand shock profile, Ωε =

{ε1, . . . , εK} for some given positive integer K. We may choose to take the values ε1 ≤ ε2 ≤

· · · ≤ εK as given by εk = F−1( k−1
K−1), k = 1, . . . ,K. This will correspond to an assumption

that demand is equal to D(p) + εk with probability 1/K for each k = 1, . . . ,K. However,

since we are seeking strong equilibria, the results are independent of the distribution function

F and hence do not depend on the probability with which each of the εk occur.

We suppose that the market clears at the price pk when the demand shock is εk and so

n∑

i=1

si(pk) = D (pk) + εk.

We write qik for the amount that firm i is dispatched at this price and βik for the slope of

the supply function for firm i at this point (i.e. βik = s′i(pk)). We will construct the supply

functions in such a way that they are differentiable at pk, k = 1, 2, . . . ,K, so that these slopes

are well-defined.

We will consider supply functions that are piecewise linear, with separate pieces corre-

sponding to each of the possible demand shocks εk. Thus the k’th piece of the supply function

for firm i passes through the point (pik, qik) at a slope βik. (It is convenient to write the

price here as pik rather than pk since we wish to think of the choice of (pik, qik) being made

by firm i). In order to define a supply function we require that two consecutive segments

of a supply curve, applying at pik and pik+1, intersect at some point between pik and pik+1.

This simplifies the representation of equilibrium conditions discussed later (e.g. (16)). This

is illustrated in Figure 2. In fact, to ensure that pik is a smooth point of the piecewise supply

curve, we require that the intersection point is strictly inside the interval (pik, pik+1). Hence

we require that there exist p̃ik for k = 1, . . . ,K − 1 such that

qik+1 + βik+1(p̃ik − pik+1) = qik + βik(p̃ik − pik), pik < p̃ik < pik+1. (13)

Note that it is possible to have two consecutive lines coincide. In this case, there exists

infinitely many points satisfying (13). However, the supply curves constructed below are

independent of the choices of such points.

Given (pik, qik) and βik ≥ 0, k = 1, . . . ,K, satisfying pik < pik+1, qik ≤ qik+1 and (13) for
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Figure 2: Construction of piecewise linear supply functions

k = 1, . . . ,K − 1, a supply function for firm i is constructed as follows

si(p) =





qi1 + βi1(p − pi1), p ≤ p ≤ p̃i1

qik + βik(p − pik), p̃ik−1 ≤ p ≤ p̃ik, k = 2, . . . ,K − 1

qiK + βiK(p − piK), p̃iK−1 ≤ p ≤ p̄

(14)

where p and p̄ are the price floor and price cap imposed on all firms by market rules.

Firm i determines its optimal price, given the other firms’ supply functions sj(p) for j 6= i,

by solving the following profit maximization problem for demand shock εk:

maximize
pik

[D(pik) + εk −
∑

j 6=i sj(pik)]pik − ci(D(pik) + εk −
∑

j 6=i sj(pik))

such that p ≤ pik ≤ p̄

0 ≤ D(pik) + εk −
∑

j 6=i sj(pik) ≤ q̄i

(15)

The optimal choice of qik follows from the market clearing condition at price pik: i.e. qik =

D(pik) + εk −
∑

j 6=i sj(pik).

Note that the objective function problem for (15) is concave on each of the intervals where
∑

j 6=i sj(p) is smooth. A global maximum can be found by comparing the maximum values of

the objective function on each of these finitely many pieces.

We aim to approximate a continuous piecewise smooth supply function equilibrium when

firms face an uncertain demand which follows a continuous distribution. In fact, as we will

show in computational examples, our method will work well for any strong supply function

equilibrium which as we have already shown will have at most finitely many jumps. We begin

by assuming that the equilibrium price at each of the demand shocks occurs at a smooth point

of the supply function (14). So we assemble the equilibrium conditions for {(15)}n
i=1 for each

demand shock realization in the following set of equilibrium conditions (where we now make
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use of the fact that we are interested in solutions with pik = pk, i = 1, . . . , n) :

qik − (pk − c′i(qik))(
∑

j 6=i βjk − D′(pk)) + λik − µik = 0
∑n

j=1 qjk = D(pk) + εk

qik+1 − qik − βik+1pk+1 + βikpk + (βik+1 − βik)p̃ik = 0, void when k = K

pk < p̃ik < pk+1, βik ≥ 0

p ≤ pk ≤ p̄, 0 ≤ qik ≤ q̄i

λik ≥ 0, µik ≥ 0, λik(q̄i − qik) = 0, µikqik = 0

i = 1, . . . , n, k = 1, . . . ,K,

(16)

where the pieces qik +βik(p−pk) and qik+1 +βik+1(p−pk+1) intersect at p̃ik, k = 1, . . . ,K −1

for i = 1, . . . , n, and λik, µik are the Lagrange multipliers of the constraints on qik.

A solution to the conditions (16) will determine a piecewise linear approximation to a

supply function equilibrium. This gives an alternative to a direct numerical solution of the

ODE system (2) if it has at least one smooth solution. A basic ODE method will start from

an integration formula [32]:

y(xj + h) = y(xj) +

∫ xj+h

xj

f(y(t), t) dt

at the current point xj with a forward step h > 0, for the initial value problem of ODE:

y′(x) = f(y, x), y(x0) = y0.

Various ODE numerical methods are based on an approximate integration in the above for-

mula, for example using a Taylor expansion of f at y(xj) and xj : there is no equivalent to this

integration in the approach we propose. Our method avoids making a fixed discretization of

the price range as would be the case with a numerical ODE method. Moreover our approach

does not involve any procedure for choosing initial values of the supply functions.

An important advantage of our method, as we show in the theorem below, is that the pairs

of prices and quantities of a solution of (16) will lie on the equilibrium supply curves, rather

than being an approximation to the curve. To make this more precise, suppose that there

exists an equilibrium solution with supply functions {s∗i (p)}n
i=1. We would like to show that

there is a solution to (16) with the property that qik = s∗i (pk), i = 1, . . . , n, k = 1, . . . ,K (and

then we would expect the slope βik to approximate the slope of the tangent to s∗i at pk).

In some cases there may be a difficulty due to the non-existence of a piecewise linear

approximation to s∗i where the slopes of the pieces match the tangents of s∗i at certain points
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(pk, qik). For example if the equilibrium solution were given by the supply function s∗i (p) =

c + (p − p0)
3 and p1, p2 (determined by ε1, ε2 ) were to be two points symmetric about p0,

then the tangent lines of s∗i (p) at these two points do not intersect. These sorts of problems

can only occur when there is a change of sign in the second derivative of s∗i and can always

be resolved by adding or changing the choice of points εk.

Theorem 8 Let {s∗i (p)}n
i=1 be a strong supply function equilibrium on [p, p̄]. Then, for K

large enough, there exists a solution εk, pk, qik, p̃ik, λik, µik, i = 1, . . . , n, k = 1, . . . ,K to

(16), such that D(pk) + εk =
∑

j s∗j(pk), qik = s∗i (pk), i = 1, . . . , n, k = 1, . . . ,K. Moreover

βik = s∗′i(pk) for i = 1, . . . , n, and all but a finite number of k.

Proof We begin by supposing that the supply functions s∗i are smooth for each i = 1, . . . , n.

Given a choice of p1 < p2 < ... < pK , we define the corresponding demand shock εk such that

D(pk) + εk =
∑

j s∗j(pk). By assumption, for k = 1, . . . ,K, pk is a global optimal solution to

(15) for each firm i in the following form:

maximize
p

[D(p) + εk −
∑

j 6=i s
∗
j(p)]p − ci(D(p) + εk −

∑
j 6=i s

∗
j(p))

such that p ≤ p ≤ p̄

0 ≤ D(p, εk) −
∑

j 6=i s
∗
j(p) ≤ q̄i.

The first order optimality conditions of this problem, when we substitute qik = s∗i (pk) and

βik = s∗′i(pk), gives the first two equation sets in (16). Moreover, since s∗i is monotonic

increasing, βik ≥ 0. The assumptions on s∗i imply p ≤ pk ≤ p̄. Since 0 ≤ s∗i (p) ≤ q̄i, we have

0 ≤ qik ≤ q̄i, so it only remains to check the conditions involving p̃ik.

Consider the continuous function g, defined by

g(z) = qik+1 − qik − βik+1pk+1 + βikpk + (βik+1 − βik)z. (17)

We will be finished if we can show that there is a zero of this function strictly between pk and

pk+1. Now

g(pk) =
[
s∗i (pk+1) + (pk − pk+1)s

∗′
i(pk+1)

]
− s∗i (pk)

g(pk+1) = s∗i (pk+1) −
[
s∗i (pk) + (pk+1 − pk)s

∗′
i(pk)

]
,

Thus g(pk) is the difference, at pk, between the tangent line to s∗i taken at pk+1 and the curve

s∗i (and similarly for g(pk)). If s∗i is convex (but not affine) on the interval (pk, pk+1) then

g(pk) > 0 > g(pk+1). If s∗i is concave (and not affine) on this interval then g(pk) < 0 < g(pk+1).
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In either case there is a point strictly between pk and pk+1 where g is zero (and the same is

true if s∗i is affine in the interval). With an arbitrary choice of εk the only case in which we

may not be able to find a point p̃ik in the required range is when there is a change of sign

in the second derivative of s∗i strictly between pk and pk+1. In this case we can move the pk

slightly (equivalent to changing εk) or add a new price point pk (equivalent to adding a new

demand shock εk) so that pk is at a point where s∗′′i (pk) = 0. Hence we can arrange to have

either concavity or convexity for each supply function s∗i , in all the intervals (pk, pk+1).

Now consider the case where the equilibrium supply functions (as in Lemma 3) have

finitely many (isolated) points at which they are not smooth and possibly not continuous.

First suppose that there is a point, pz, at which the supply function is continuous but not

smooth. We will show that by taking pk and pk+1 approaching pz from the left and right

respectively the condition involving p̃ik will hold. We take pk = pz − δ and pk+1 = pz + δ and

gδ to be the function defined in (17) with this choice of pk and pk+1. Then

gδ(pz + δ) = s∗i (pz + δ) − s∗i (pz − δ) − 2δβik

= δs∗′i (p+
z ) + δs∗′i (p−z ) − 2δβik + O(δ2) = δs∗′i (p+

z ) − δs∗′i (p−z ) + O(δ2)

and similarly gδ(pz − δ) = δs∗′i (p−z ) − δs∗′i (p+
z ) + O(δ2). Hence if the derivative of s∗i changes

at pz the continuous function g will change sign between pz − δ and pz + δ for δ chosen small

enough. This is enough to establish the existence of p̃ik as required. Notice that from (8) one

s∗i changing slope at pz will imply that each s∗′j is discontinuous at pz.

Now consider the case where one of the supply functions, say s∗i , has a discontinuity at

pz. From Theorem 2 other supply functions s∗i (pz) are either 0 or at their capacity limits. We

choose the εk, k = 1, 2...,K so that one of the prices, say ph, is equal to pz. We also take ph−1

and ph+1 sufficiently close to ph for the following inequality to hold (the left and right hand

sides approach s∗i (p
+
z ) and s∗i (p

−
z ) respectively)

s∗i (ph+1) − (ph+1 − ph)s∗′i (ph+1) > s∗i (ph−1) + (ph − ph−1)s
∗′
i (ph−1).

Now we need to choose εh so that qih is strictly between the two sides of this inequality. This

is enough to ensure that for βih chosen large enough there will be appropriate intersection

points p̃ih−1 and p̃ih. Usually we choose the slopes βjk to match the derivatives s∗′j (pk) in

order that the first equation in (16) is satisfied. But this does not happen for βih, and in fact
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s∗′i (ph) is not defined. However observe that the equations:

qjh − (ph − c′j(qjh))(
∑

l 6=j

βlh − D′(ph)) + λjh − µjh = 0, j 6= i (18)

are easily satisfied here. When qjh = q̄j we can take the multiplier λjh large and positive to

achieve equality in (18), and similarly if qjh = 0 we can take µjh large and positive. �

In general there may be many solutions to the system (16) and not all of these will match

a smooth supply function equilibrium. However as we refine our approximation by increasing

the number of points εk we can expect a limiting solution to the system to approach a true

supply function equilibrium.

Hence we investigate the limit of a series of supply function equilibria for finitely many

demand scenarios, when these demand shock scenarios approximate a continuous demand

shock function. Let m = 2, 3, . . . and define ε
(m)
k = F−1( k−1

m−1 ), k = 1, . . . ,m. Let p
(m)
k , q

(m)
ik ,

p̃
(m)
ik , β

(m)
ik , λ

(m)
ik , µ

(m)
ik , i = 1, . . . , n, k = 1, . . . ,m, be a solution of (16) and let {s

(m)
i (p)}n

i=1

be the corresponding supply functions constructed from (14). Then we have the following

theorem (when there are no jumps or discontinuities).

Theorem 9 If p
(m)
k , k = 1, . . . ,m are global optimal solutions of (15) for each firm i =

1, . . . , n with the supply functions {s
(m)
j (p)}n

j=1, and β
(m)
ik < Λ, k = 1, . . . ,m, i = 1, . . . , n, for

some upper bound Λ independent of m, then:

1) there is a subsequence of {s
(m)
i (·)}n

i=1 which converges to a continuous supply function

equilibrium in the sup-norm of continuous functions for the demand shock F (·);

2) moreover, if {s
(m)
i (·)}n

i=1 converges point-wise, then {s
(m)
i (·)}n

i=1 itself converges to a

continuous supply function equilibrium in the sup-norm.

Proof Since the slopes βm
ik are between 0 and Λ

|s
(m)
i (p) − s

(m)
i (p′)| ≤ Λ|p − p′|

for any p, p′ ∈ [p, p̄]. Thus {s
(m)
i (·)}n

i=1 is equicontinuous on [p, p̄], and applying Áscoli Theorem

(see for example [31]) completes the proof of the convergence parts of the theorem.

Now we show that the limit functions form an equilibrium of {(15)}n
i=1. Let {si(·)}

n
i=1 be

the limits of the sequence {s
(m)
i (·)}n

i=1 or one of its subsequences (which is denoted by the

sequence itself to save notation). It is easy to see that si(·) is nondecreasing in p for each

i = 1, . . . , n since β
(m)
ik ≥ 0. We choose an arbitrary demand shock ε (with ε = F−1(r) for
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some r ∈ (0, 1)). Then there is a choice of k as a function of m, which we denote by k rather

than k(m), such that ε
(m)
k → ε as m → ∞.

Let πi(p, s
(m)
−i , ε

(m)
k ) denote the profit of firm i given market price p when the other firms

have the supply functions s
(m)
−i = {s

(m)
1 (·), · · · , s

(m)
i−1(·), s

(m)
i+1(·), · · · , s

(m)
n (·)} and the demand

shock is ε
(m)
k . Since p

(m)
k is a global maximizer of πi(p, s

(m)
−i , ε

(m)
k ), we have

πi(p
(m)
k , s

(m)
−i , ε

(m)
k ) ≥ πi(p, s

(m)
−i , ε

(m)
k ), for any p ≤ p ≤ p̄

for i = 1, . . . , n. Letting m → ∞, we have p
(m)
k → p∗ for some p∗ (if necessary, passing to a sub-

sequence). Thus, from the continuity of πi, and since s
(m)
−i → {s1(·), · · · , si−1(·), si+1(·), · · · , sn(·)},

and ε
(m)
k → ε, we know that p∗ is a global maximizer for firm i’s profit given the other firms’

supply functions si(·) for demand realization ε for i = 1, . . . , n . �

Note that when some βik are unbounded as k → ∞, which means the piecewise linear

supply curves constructed from (14) become vertical for those prices pik at which βik are

unbounded, then we may still have a form of convergence. Specifically the piecewise linear

curves may converge to a supply function equilibrium with discontinuities in the Hausdorff

metric (i.e. the graphs of the piecewise linear supply functions converge to the graphs of the

equilibrium supply functions) see Lemma 2.2 of [5].

4 Implementation and examples

In this section we will describe how the method can be implemented and give some examples of

asymmetric equilibria. Briefly, the implementation involves two procedures. The first step is

to formulate a sequence of non-linear programming (NLP) problems so that the set of feasible

solutions converges to the set of solutions of (16). We use this approach because it provides

a convenient way to handle the complementarity constraints between λik, µik and qik. It is

also helpful in dealing with the strict inequalities pk < p̃ik < pk+1. We choose the parameters

in such a way that a solution to the last iteration is a solution to (16) up to the machine

precision. The second step is to check whether the {pk} are the global optimal solution of

(15) given the constructed supply functions sj(p), j = 1, . . . , n.

First we describe the procedure to check global optimality. Let pk, qik, p̃ik, βik, εk, λik,

µik, i = 1, . . . , n, k = 1, . . . ,K, be the final solution of the sequence of NLP problems. Recall

that pk is already a local optimal solution of (15) for each firm and demand shock εk.
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For each firm i, we order the points p̃jk, j = 1, . . . , n, j 6= i, k = 1, . . . ,K. These are

the points at which the aggregate supply function from the other firms is non-smooth. Now

consider the problem of calculating the optimal choice of price (15) when p is restricted to

lie between two neighboring points p̃jk. Given a demand shock εl, and the sj(p) constructed

from pk, qjk, p̃jk, βjk, this is simply a one-dimensional quadratic (concave) profit maximization

problem and so the optimal solution of this problem can be calculated very easily. Comparing

the profits of these finitely many pieces we can find a global maximizer p∗il for firm i for the

given demand shock. If p∗il = pl for each i and l (in our GAMS implementation, we check

whether |p∗il − pl| < 10−6), then we have reached the desired solution. Otherwise, we need

to modify the objective function of the NLP problems. The objective functions used in our

numerical computation perform well in the sense that if the NLP problems are successfully

solved with reasonable accuracy, then this check agrees that pk, k = 1, . . . ,K are global

optimal solutions of (15) for each firm and each demand shock εk.

Next we describe the formulation of the NLP minimization problems. First, given K, we

choose ε̃k = εmin + (k − 1)(εmax − εmin)/(K − 1) as a discretization of the range of demand

shocks in our computation.

Let ρ > 0. We replace the equations λik(q̄i − qik) = 0 and µikqik = 0 in (16) with the

inequalities λik(q̄i − qik) ≤ ρ and µikqik ≤ ρ for i = 1, . . . , n, k = 1, . . . ,K. This replacement

helps the NLP solver handle the complementarity constraints, which violate a standard NLP

constraint qualification. We also introduce variables ξik, i = 1, . . . , n, k = 1, . . . ,K − 1 with

ξik =
pk+1 − p̃ik

pk+1 − pk
,

that is, ξik(pk+1 − pk) = pk+1 − p̃ik. To have p̃ik lying strictly in (pk, pk+1), we must have

0 < ξik < 1. We enforce pre-set lower and upper bounds for ξik, say ξik ∈ (0.0001, 0.9999) if

not otherwise stated in our implementations.

Our computational experience suggests that using the following constraints

ξik(pk+1 − pk) = pk+1 − p̃ik + ρ (19)

enables the NLP solver to more easily find a feasible solution.

To make it easier to find solutions with appropriate values of p̃ik (as discussed in Theo-

rem 8) we allow εk to vary. But we need to ensure that the εk are evenly spread through [0, ε̄],

and so we have added the following constraints to the NLPs:

0.25(3ε̃k + ε̃k−1) ≤ εk ≤ 0.25(3ε̃k + ε̃k+1), for 1 < k < K, ε1 = ε̃1, εK = ε̃K . (20)
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Our numerical experience is that there is no difficulty associated with non-existence of p̃ik

when we fix εk = ε̃k for all k, but we have retained the distinction between εk and ε̃k in our

base implementation.

Thus the basic problem we have solved is the following NLPs for ρ → 0+:

minimize
p,q,p̃,β,ε,λ,µ

∑
i,k(ξik − 0.5)2 +

∑
k(εk − ε̃k)

2

such that (16) with aforementioned replacement of complementarity constraints

(19) and (20).

(21)

We can modify the objective function to explore the existence of various supply function

equilibria as seen in the rest of this section.

Our computational experience also suggests that adding
∑

i,k βik to the objective func-

tion makes it easier for the NLP solver to find a feasible solution and stabilizes the solution

procedure. Clearly adding this term to the objective will make it more likely that we end up

with an equilibrium with low values for si(p), which corresponds to solutions that hold back

supply.

In our implementation, we start with ρ = 10 and scale it down by a factor of 0.1 at each

iteration; solving the problem (21) a total of N = 14 times. For some harder problems, it may

be helpful to increase the scale factor to, e.g., 0.5 (and at the same time increase the number

of iterations, to say N = 37 to maintain a final ρ value sufficiently close to zero).

Since (21) is a large-scale problem for multiple firms and a large number of demand shocks,

we need to take care with the choice of starting points for the solution of (21). In our

examples we have used the following set of starting values : pk = (k − 1)(p̄ − p)/K, p̃ik =

(pk + pk+1)/2, εk = ε̃k, ξik = 0.5, qik = max{0, (D(pk) + εk)/n}.

We use the nonlinear programming solver CONOPT (Version 3.0) [15] in the GAMS en-

vironment for all the computation in this section. Our numerical experience shows that

CONOPT is more capable in solving our problems than other NLP solvers in GAMS. How-

ever, we note that CONOPT is sensitive to the choice of objective functions. In particular

for some examples, CONOPT may deem a problem infeasible for one objective function, but

may find an optimal solution to the problem when a different objective function is used, even

though the constraints are unchanged.

We have done many numerical examples to test the scheme (16). We will present only

a few results due to limitations of space. In each of the examples we assume quadratic cost

functions and a linear demand function. If not specified otherwise, we take p = −1.0, p̄ = 150.
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We have intentionally set the price cap high enough and price floor low enough so that they

are not binding in our examples (even though this may be an important issue in some markets

for electricity).

Example 10 We begin with an example with two firms which will illustrate Theorem 7. The

firms have cost functions c1(q) = q + 0.5q2, c2(q) = 10q + q2 with capacity limits q̄1 = q̄2 = 80

respectively, which are large enough so that no firm is constrained. The demand function is

D(p) = 0.5 − 0.5p with demand shock ε uniformly distributed over [0, 100].

For this example it is easy to calculate a linear supply function equilibrium: s1(p) =

0.4529(p − 1) and s2(p) = 0.3279(p − 10) for p ≥ 10. This follows from the closed-form

solution si(p) = αi + βip, i = 1, 2, with

αi = −Ciβi, βi = (BWi/2)(
√

1 + 4/(DiBWi) − 1)

where Wi = (2Di + D1D2B)/(D1 + D2 + D1D2B). This is now a standard result (see for

example, [18]).

The affine supply function equilibrium is confirmed by the numerical models (21) with

the objective function
∑

i,k(ξik − 0.5)2 +
∑

k≥30(βik+1 − βik)2. For the price range [1.0, 10),

firm 2 does not supply and so firm 1 is a monopoly with supply curve s1(p) = (p − 1)/3 for

1 ≤ p < 10. The supply function s1(·) jumps from 3.0 just below p = 10 to 4.0764 just above

p = 10. For prices less than 1.0, firm 1 will supply nothing. Thus we obtain a piecewise

linear supply function equilibrium which is plotted in Figure 3. Demand shocks in the interval

[7.5, 8.5764] all yield the same price of 10.

The other two nonlinear supply function equilibria, labelled as nonlinear equilibria 1 and 2

in Figure 3, are found using (21) with the objective functions:

∑

i,k

(ξik − 0.5)2 +
∑

k

(εk − ε̃k)
2 +

∑

i,k

βik

for nonlinear equilibrium 1 in Figure 3, and

∑

i,k

(ξik − 0.5)2 +
∑

k

(εk − ε̃k)
2 −

∑

k

q1k

for nonlinear equilibrium 2 in Figure 3, where the term −
∑

k q1k is used to maximize the q1k’s.

We used the constraints 0 ≤ βik ≤ 106 and 0.0001 ≤ ξik ≤ 0.9999 and we take K = 300. All

three equilibria have a jump at p = 10.0. and they can be seen to be members of an ordered

family.
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Figure 4: Multiple asymmetic equilibria

not in order with symmetric generators

Notice that any two equilibria, say s and s̃, have the property that the values for si(p)

and s̃i(p) move apart from each other as the price increases. This is a general property for

problems with just two firms. To see this observe that the equilibrium condition (2) implies

d

dp
(s1(p) − s̃1(p)) =

s2(p)

p − c′2(s2(p)
−

s̃2(p)

p − c′2(s̃2(p)
> 0, when p < pmax

if s2(p) > s̃2(p), and similarly for (d/dp)(s̃2(p) − s2(p)).

It is not hard to see that there will be a whole family of solutions in an ordered set between

the nonlinear equilibria 1 and 2. This follows from Kneser’s Theorem [14, Theorem 2.17].

Example 11 (intervals of asymmetric solutions for symmetric suppliers) In this

example, c1(q) = c2(q) = 5q + q2 and the demand function D(p) = 60 − 0.5p,q̄1 = q̄2 =

80, p̄ = 150, and the demand shock range is [50, 100]. It has been shown in [25] that there are

only symmetric equilibria for symmetric suppliers when demand is low enough so that any

supply curve will pass through (c′i(0), 0). In this example, we show the types of non-symmetric

equilibria that occur when the minimum realizable price is above the marginal supply cost at

zero supply. To do so, we modify the objective function of (21) to

∑

i,k

(ξik − 0.5)2 +
∑

k

(εk − ε̃k)
2 +

∑

k

(q2k − q1k) + (q21 − τ)2.

with τ = 20 (for equilibrium 1 in Figure 4) and

∑

i,k

(ξik − 0.5)2 +
∑

k

(εk − ε̃k)
2 + (q21 − τ)2.

with τ = 25 (for equilibrium 2 in Figure 4). The term
∑

k(q2k − q1k) has the effect of

maximizing the difference between q1k and q2k in order to force an asymmetrical equilibria.
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We also used the bounds 0 ≤ βik ≤ 106 and 0.0001 ≤ ξik ≤ 0.9999 and a value K = 300 for

these solutions. We can see that these two equilibria are not in an ordered family.

Notice that equilibria 1 has both supply functions passing through the point (110, 52.5)

at which they have infinite slope (since p − c′i(si(p)) = 110 − 5 − 2 ∗ 52.5 = 0, i = 1, 2.) This

can only be part of a feasible supply function at its end point. In fact this point is at the

intersection of the locus of points where the slope is infinite (p = 5+2q) and the points which,

if both supply functions are the same, correspond to the highest demand shock εmax (i.e. the

points q = 0.5D(p) + 0.5εmax, which implies p = 320 − 4q.).

Example 12 This example has three firms and shows the uniqueness of the supply function

equilibrium when the minimum demand shock is low enough and all generators but one reach

their capacity limits. The cost functions of the three firms are

c1(q) = 5q + 0.8q2, c2(q) = 8q + 1.2q2, c2(q) = 12q + 2.3q2

with capacities q̄1 = 11, q̄2 = 8 and q̄3 = 55 respectively. The demand shock ε is uniformly

distributed over [0, 50] and the demand function is D(p) = 2.5 − 0.5p. we use (21) with

K = 300, 0 ≤ βik ≤ 10000, 0.0001 ≤ ξik ≤ 0.9999 and the following objective function:

∑

i,k

(ξik − 0.5)2 +
∑

k

(εk − ε̃k)
2 +

∑

i,k

βik.

The outcomes are plotted in Figure 5.
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Figure 5: Locally unique SFE with capacitated sppliers and low minimal demand shock
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We can see a jump in quantity at the price p = 8 where firm 2 starts to supply from zero,

but there is no jump at p = 12 where the third firm starts to supply from zero. This is in

accordance with the result of Theorem 2. In this example we find only one supply function

equilibrium in which firms 1 and 2 reach their capacity limits.

Example 13 This example is for five competing electricity generators: it is taken from [9]

(see also [10].) The cost functions and capacity limits are given in Table 13. These parameters

and the load duration curve are taken from [9]. Here we scale down the lowest demand to

force all firms to have zero generation at the lowest demand shock, and then correspondingly

increase the largest demand shock so that the largest demand is the same as that in [9, 10].

firm 1 firm 2 firm 3 firm 4 firm 5

Ci 8.0 8.0 12.0 12.0 12.0

Di 1.789 1.93 4.615 4.615 2.687

q̄i 10.4482 9.70785 3.35325 3.3609 5.70945

Table 1: Cost function and capacity caps for the five generators
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Figure 6: Five firms with three capacity-constrained

Note that firm 3 and firm 4 have identical cost functions. The load duration curve is

0.8+34.2(1−t) and price elasticity is 0.1. Hence we have a demand function D(p) = 0.8−0.1p

and a demand shock uniformly distributed over [0, 34.2]. To solve this problem we use (21)

with an objective function

∑

i,k

(ξik − 0.5)2 +
∑

k

(εk − ε̃k)
2 +

∑

i,k

βik
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and K = 300. We use 0 ≤ βik ≤ 100 and 0.01 ≤ ξik ≤ 0.99 here. The capacitated supply

function equilibrium is given in Figure 6, where three firms are actually capacity-constrained

at the highest prices. This is one of a family of possible solutions.

5 Conclusions

Supply function equilibria are known to be the appropriate equilibrium concept in some cir-

cumstances, but their application has been limited by difficulties in dealing with asymmetric

cases. In this paper, we characterize the form of supply function equilibria when both capac-

ity limits and cost functions vary from one firm to another. Our main result is that under

certain conditions supply function equilibria are ordered with at most one such equilibria in

which all but one firm reaches its capacity limit. At first sight this does not seem to deal with

the problem of equilibrium selection. However our numerical results suggest that for many

problems the range of possible solutions is very small. In particular it is very hard to find

examples for which the behaviour of Figure 1 occurs, i.e. a single problem with both a family

of equilibria having two or more firms not reaching their capacity constraints at the highest

prices, and another solution in which all but one firm reaches their capacity constraints. In

fact there are many problems which seem to have reasonable data, but which do not have any

equilibrium solutions.

We also propose a novel scheme to approximate supply function equilibria through a

discretization of the demand distribution. This results in a piecewise linear supply function

which can always be found (given a fine enough discretization) if a strong supply function

equilibrium exists. Moreover we provide convergence results and demonstrate that the scheme

works well in practice.

There are a number of advantages of the scheme comparing with existing computational

methods of finding equilibrium supply functions. The scheme does not need the specification

of an initial point (i.e. a price-quantity pair) as is the case with ODE methods. Also the range

of realizable prices in equilibrium is determined endogenously by the demand profile and firms’

profit maximization strategies. This avoids one source of problems in methods which require

a price range to be specified at the outset, which may lead to wrong conclusions.
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