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Abstract

Generators in a wholesale electricity market can exercise market power, but the ex-

istence of forward hedging contracts between consumers and generators mitigates this

market power. A question arises as to why generators are willing to enter contracts with

consumers to surrender their market power. In this paper, we model the role of the con-

sumers (retailers here) in offering hedging contracts to generators. We suppose that the

retailer gives the generators economic incentives to enter into contracts, quite apart from

any risk premium. Our model shows that the retailer can increase its profit in comparison

with the case when there are no contracts, and that the social welfare is maximized. We

also consider a situation with multiple retailers and model the contracting game between

the retailers.

1 Introduction

Wholesale electricity markets, in which generators compete to supply demand from retailers,

are open to the exercise of market power by generators. Strategic bidding (or capacity with-

holding) in markets with a small number of generators can be used to enable generators to

obtain higher prices than the competitive benchmark. Where there are pre-existing hedging

contracts, these can act to curb generators’ market power in the wholesale spot market; this

effect has been discussed by Green [1999] and by other authors.

Forward contracts, futures contracts, and various options contracts are widely used to

manage financial risks associated with volatile spot market demand, prices and information

uncertainty in energy markets. The contracts enable generators to hedge unfavorable low spot

market prices and the retailers to hedge financial losses due to high spot market prices.1

1A number of authors have discussed the use of contracts in electricity markets from this viewpoint (see e.g.

1



There is another stream of research using multi-stage game theory to model the strategic

interactions between the contract market and the spot market (e.g. Allaz and Vila [1993],

Green [1999], Newbery [1998], Powell [1993]). In these models contracts are signed during

a first stage, and then the wholesale spot market occurs during a second stage of the game.

One difficulty faced by researchers is to appropriately represent the contract negotiations at

the first stage. A commonly adopted assumption is that the contract price is equal to the

expected spot market price. We call this contract-spot price equivalence and observe that it

is a type of “no arbitrage” assumption.

By considering a supply function equilibrium (SFE) in the spot market, Green [1999]

shows that when there is contract-spot price equivalence and the retailer is risk-neutral, then

generators would not enter any contracts with retailers if the strategic interaction between

generators in the contract market satisfies the Cournot conjecture; and, at the other extreme,

the generators would be fully contracted if they play a Bertrand game in the contract market.

Green uses contract-spot price equivalence to formulate a model without entering into all the

details of the stage one contract negotiation. In a recent doctoral thesis Anderson [2004] has

discussed the way that the contract and spot market interact when there is a supply function

equilibrium in the contract market as well as the spot market.

The contract-spot price equivalence assumption is reasonable if market participants cannot

influence the spot market price; that is, the spot market is fully competitive and the variation

of market prices is only due to stochastic factors such as load variation, weather conditions,

uncontrollable generating unit failure, etc. However, both theoretical models and empirical

data show that generators have significant market power in the spot market leading to higher

prices than the marginal generation cost Borenstein et al. [2002], Wolfram [1999].

In this oligopolistic market generators are aware that entering into contracts will reduce

their profitability. The standard argument here is that competing generators are forced to

enter contracts, since if they do not do so, but their competitor does, then they will be worse

off. This is a type of prisoner’s dilemma situation. The existence of a contract market results

in both generators taking contract positions that end up reducing their profits. The extent to

which this is a believable representation of how such markets operate has been disputed by

Harvey and Hogan [2000]. These authors argue that, except where there are vesting contracts,

Kaye et al. [1990], Gedra [1994] and Eydeland and Wolyniec [2003]). The foundation for research in this area

has been traditional commodity pricing models (e.g. Hull [1991]).
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generators are unlikely in practice to enter into such contracts due to the repeated nature of

this marketplace: the repeated prisoner’s dilemma typically produces a tacit collusive outcome

in which, for their mutual longer term benefit, neither generator enters into a contract.

We take a somewhat different approach and question the modelling assumption that the

contract price is equal to the expected spot market price, at least in the short term. When

there are significant random factors in the operation of the spot market, then a difference

between the two prices can be interpreted as a risk premium paid by the retailers because of

their different risk profile in comparison to a generator. However in this paper we will argue

more directly for a strategic premium in the contract market, even when market participants

are risk-neutral. As we will see, once the contract-spot price equivalence assumption is laid

aside, some previous ‘too good to be true’ results disappear (Harvey and Hogan refer to “a

silver bullet that produces a surprising and unintuitive result that market power cannot coexist

with the opportunity for forward trading”).

It is worth considering how the operation of the contract market mechanism is modelled by

other authors. Newbery [1998] assumes that generators each offer to retailers a fixed quantity

in contracts at a specified price. Retailers then decide whether to accept the contracts on

offer, buying either all the contracts or none (with the decision to buy the contracts being

made if they are indifferent between contracting and not contracting). Newbery then argues

that in a rational expectations equilibrium with risk neutral contract traders, the contract

price for a base load contract must be equal to the time-weighted spot price.

This conclusion, however, may fail if the number of retailers is small. In this case an

individual retailer might rationally agree to a contract with price higher than the spot market

price that will occur. The retailer compares the price of the contract, and the resulting profit,

with the result if the contract is not signed. But if the retailer does not sign the contract,

then the generator involved has a lower contract cover and will increase their bid in the spot

market. This in turn will reduce the profits to the retailer.

It may be argued that the existence of speculators in the market will force spot and

contract prices to be the same (in expectation). Consider a situation in which generators offer

contracts with higher prices than will occur in the spot market, but the retailers accept them

on the basis that not doing so would lead to higher spot prices. Does this give an opportunity

for an arbitrageur? We are concerned with financial hedging instruments here, rather than

contracts for actual delivery of power. Hence the apparent arbitrage opportunity is to step
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in and offer a contract to the retailer at a lower price than offered by the generator. Since

this is a financial contract there is no need for the arbitrageur to have any involvement in the

spot market. This is attractive to the retailer, but the action of the arbitrageur reduces the

contracts sold by the generator. The result is that the spot price will go up, and the arbitrage

will no longer be profitable. In some markets the precise mechanisms for arbitrage may be

complex. Borenstein et al. [2004] discuss the behaviour of prices in the day ahead and real

time markets in California from 1998 to 2000, and argue that consistent price differences were

sustained for a variety of reasons including the limited number of firms able to take advantage

of profitable arbitrage trades.

We will assume that the role of retailers in the spot market is passive: there is no demand

side bidding and retailers do not have control over the generation decisions. In this paper, we

model a situation in which the retailer can take an active role in the contract market, and

give the generators economic incentives to enter into a contract.

The paper is organized as follows. Section 2 sets up our modelling environment and the

supply function equilibrium model for the spot market. Section 3 establishes the retailer’s

contracting model and presents the main results for this paper, which show that all players

can benefit from the contracts. Section 4 studies a model where the retailer chooses a single

generators who will be offered a contract, and compares the market outcomes. Section 5

extends the conclusions in Section 3 to a situation in which two retailers compete, as well

as discussing a Stackelberg game between the retailers in order to determine the contract

quantities and prices that are offered. The appendix contains the technical proofs of lemmas

and propositions.

2 Supply function equilibrium in the spot market

We assume there are two generators in the market and one retailer (later we will extend our

discussion to the case with two retailers). The model can be easily extended to a situation

with more than two generators. We assume perfect information in this paper. The retailer

has a utility function whose marginal utility is the demand function in the spot market. The

demand function, which is assumed to be known to the generators, has the following form as

in Green [1999], Powell [1993]

A−Bp
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where p is the market price, A and B are independent of p with A dependent on a random

shock. In most electricity markets demand is nearly inelastic over a short time frame; but

it is often appropriate to take an elastic demand function as here since we deal with the

residual demand that the generators in question face after taking account of the supply from

non-strategic price-taking generators. The two generators’ cost functions are denoted by c1(q)

and c2(q), respectively.

In the spot market, the two generators offer to supply s1(p) and s2(p) at a market price p.

The spot market price is determined from the intersection of the demand curve and the

aggregated supply curve, that is the market price p satisfies s1(p) + s2(p) = A− Bp. We use

the standard argument (see Green [1999], Klemperer and Meyer [1989], Green and Newbery

[1992]) that each generator maximizes its profit with respect to the market price given the

residual demand as a function of price. That is, the generator sets an optimal market price

on the basis of the residual demand it faces. The freedom of the generator to offer a supply

function (rather than a single quantity or price) allows it to achieve an optimal response, no

matter what the realisation of demand.

Given its contract position (fi, xi), with contract price fi and contract volume xi, genera-

tor i receives a payment from the contract counterparty of xi(fi − p) if the spot market clears

at price p. Thus generator i’s profit at market price p is

πi(p, x1, x2, f) = p(A−Bp− sj(p) − xi) + fxi − ci(A−Bp− sj(p))

where sj(p) is generator j’s offer with i, j = 1, 2 and i 6= j.

To find the price that maximizes generator i’s profit we take the derivative of πi to obtain

the following first order optimality condition:

A−Bp− sj(p) − xi + [p −
dci
dq

][−B −
dsj

dp
] = 0

where dci/dq and dsj/dp denote the derivatives of ci(·) and sj(·) at A − Bp − sj(p) and p,

respectively. This equation determines the price that generator i would choose once A is

known (which includes the random shock). If generator i chooses to offer a supply function

si(p), given by

si(p) = A−Bp− sj(p) (1)

= xi + (p−
dci
dq

)(B +
dsj

dp
), (2)

then this optimal price will be achieved for all demands.
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We shall confine ourselves to the case where each generator uses a linear supply function

of the form of α + βp with β ≥ 0, as did Chao and Peck [1997], Green [1999] to make the

models analytically tractable.2 In addition, we assume that the two generators have quadratic

cost functions, given by ci(q) = Ciq + 0.5Diq
2, i = 1, 2.

We can calculate the equilibrium solution as a function of the contract quantities x1 and

x2, with the results given in the following Proposition.3

Proposition 1 The unique equilibrium solution of the form si(p) = αi + βip has

αi = (1 −Diβi)xi − Ciβi, i = 1, 2

βi = (BWi/2)(
√

1 + 4/(DiBWi) − 1), i = 1, 2

where Wi = (2Di +D1D2B)/(D1 +D2 +D1D2B). The spot market price, which depends on

the realisation of demand A, is

p(x1, x2) = ξ0 − ξ1x1 − ξ2x2, where

ξ0 =
A+ C1β1 + C2β2

B + β1 + β2
,

ξi =
βi

(B + β1 + β2)(B + βj)
, i 6= j, i, j = 1, 2,

and the quantity dispatched from generator i is

qi(x1, x2) = ψi0 + ψiixi − ψijxj , where

ψi0 = βi(ξ0 − Ci)

ψii =
βi

B + β1 + β2

ψij =
βiβj

(B + β1 + β2)(B + βi)
, i 6= j, i, j = 1, 2.

Proof: See Appendix.

Note that β1, β2 are independent of x1, x2 so the generators’ contract positions only have

an effect on the intercepts for the optimal linear supply curves, and not on their slope.4

2Anderson and Xu [2005] discuss what happens with more general upwards-sloping supply curves.
3This matches the formulae derived by Green when C1 = C2 = 0.
4When the two generators are identical (having the same cost function, the same market beliefs and strate-

gies), it is easy to see from these formulae for the dispatched quantities that any nonzero contract (x1 = x2 > 0)

will lead to a higher generation output for each of them than in the no contract case (x1 = x2 = 0) since, when

β1 = β2, ψ11 − ψ12 = ψ22 − ψ21 > 0.
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3 The retailer’s model and social optimal outcomes

We model the contracting stage by supposing that the retailer decides on a contract to offer the

two generators (different contracts for each generator). Then each generator decides whether

to accept the retailer’s offer or reject it. We suppose that generator i already has a contract

(f̄i, Q̄i) with a contract price f̄i and a contract volume Q̄i, i = 1, 2. These contracts may be

signed at earlier stages or with different retailers.

At the first stage the retailer offers a new contract (fi, Qi) to generator i with contract

volume Qi at a strike price fi, i = 1, 2. The generators each decide whether or not to accept

the contract offer made to them. Then the generators make their offers into the spot market

with parameters set out in Proposition 1. Finally demand occurs with some distribution over

the random shock A.

There are four spot market outcome scenarios depending on whether the generators accept

the contract offers or not. We use the notation (0, 0), (i, 0), (0, j), (i, j) in the superscript to

represent the four possible solutions according to which of generator i or j (or neither) accepts

the contract offer. Thus we write π
(0,0)
i for the spot market profit of generator i when neither

generator has accepted the contract offer, and we write π
(i,0)
i for the spot market profit of

generator i when it has accepted the contract (fi, Qi) but generator j has not accepted the

retailer’s contract offer (and similarly for generator j’s spot market profit). Finally π
(i,j)
i is

the profit for generator i when both generators accept the contracts offered.

Then the spot market price, generation quantities and generator profits when both gener-

ator i and generator j accept the contracts offered are as follows:

p(i,j) = ξ0 − ξi(Q̄i +Qi) − ξj(Q̄j +Qj),

q
(i,j)
i = ψi0 + ψii(Q̄i +Qi) − ψij(Q̄j +Qj),

q
(i,j)
j = ψj0 + ψjj(Q̄j +Qj) − ψji(Q̄i +Qi),

π
(i,j)
i = p(i,j)q

(i,j)
i − (p(i,j) − f̄i)Q̄i − (p(i,j) − fi)Qi − ci(q

(i,j)
i ),

π
(i,j)
j = p(i,j)q

(i,j)
j − (p(i,j) − f̄j)Q̄j − (p(i,j) − fj)Qj − cj(q

(i,j)
j ).

The corresponding expressions for the other states are obtained by deleting terms contain-

ing either Qi or Qj (or both). All of these depend on the demand shock A.

Now we turn to the retailer’s problem which is to design a contract for each of the two

generators. As we mentioned before, the retailer’s utility is derived from the demand function,

that is, the marginal utility is the demand function. Therefore, the utility of consumption of
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q units of electricity is
A

B
q −

0.5

B
q2.

The retailer designs two contracts (fi, Qi) and (fj, Qj) for generator i and generator j

to maximize its expected benefit of consumption while giving the two generators economic

incentives to enter into the contracts. The expectation here is with respect to the demand

shock A. We will write Πi for the expected value of the profit πi for generator i (where

the expectation is taken over A). So the retailer needs to choose contracts which ensure both

generators are persuaded to accept the contracts offered, i.e. Π
(i,j)
i ≥ Π

(0,0)
i and Π

(i,j)
j ≥ Π

(0,0)
j .

Thus we can formulate the retailer’s problem as follows

max
(fi,Qi),(fj ,Qj)

E[A
B
q(i,j) − 1

2B
(q(i,j))2 − p(i,j)q(i,j)

+(p(i,j) − f̄i)Q̄i + (p(i,j) − f̄j)Q̄j + (p(i,j) − fi)Qi + (p(i,j) − fj)Qj ]

such that E[p(i,j)q
(i,j)
i − (p(i,j) − f̄i)Q̄i − (p(i,j) − fi)Qi − ci(q

(i,j)
i )] ≥ Π

(0,0)
i ,

E[p(i,j)q
(i,j)
j − (p(i,j) − f̄j)Q̄j − (p(i,j) − fj)Qj − cj(q

(i,j)
j )] ≥ Π

(0,0)
j ,

(3)

where we have written q(i,j) for q
(i,j)
i + q

(i,j)
j .

Once the retailer has decided its offers the generators are faced with a take-it-or-leave-it

game. We will show in Proposition 3 that the constraints here are enough to guarantee that

the only Nash equilibrium for the take-it-or-leave-it game is one with both offers accepted.

There might be a situation in which one of these constraints fails and yet there is a unique

Nash equilibrium at solution (i, j). For example generator i may be worse off as a result

of both generators entering into contracts, but once generator j accepts the contract offer,

then generator i finds it beneficial to agree to the contract terms. Hence we might consider

the more complex problem of finding the maximum retailer utility with weaker constraints,

but sufficient to make the solution a unique Nash equilibrium. We will not deal with this

case directly, but in the next section we will consider a related problem in which the retailer

approaches just one of the generators with a contract offer. This will achieve a higher retailer

profit.

Consider the choice of fi and fj. Once Qi and Qj are fixed it is easy to see that both fi and

fj will be chosen as small as possible consistent with the two constraints being satisfied. This

also can be seen by noting that the Lagrange multipliers corresponding to the two constraints

at any solution of (3) must equal one. Hence we can assume that both constraints are satisfied
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with equality and use these to substitute for E[(p(i,j) − f̄j)Q̄j ] and E[(p(i,j) − fj)Qj ]. Since

most terms cancel the problem is equivalent to

max
Qi,Qj

E[A
B
q(i,j) − 1

2B
(q(i,j))2 − ci(qi) − cj(qj) − π

(0,0)
i − π

(0,0)
j ]

The first order conditions for this problem are:

E[ ∂
∂Qi

[(A/B)q − q2/(2B)] − ∂ci(qi)
∂Qi

−
∂cj(qj)

∂Qi
] = 0

E[ ∂
∂Qj

[(A/B)q − q2/(2B)] − ∂ci(qi)
∂Qj

−
∂cj(qj)

∂Qj
] = 0

where for simplicity we have left off the superscripts (i,j).

Thus

E[
A

B
−

1

B
(qi + qj) − c′i(qi)]

∂qi
∂Qi

+ E[
A

B
−

1

B
(qi + qj) − c′j(qj)]

∂qj
∂Qi

= 0, (4)

E[
A

B
−

1

B
(qi + qj) − c′i(qi)]

∂qi
∂Qj

+ E[
A

B
−

1

B
(qi + qj) − c′j(qj)]

∂qj
∂Qj

= 0, (5)

Moreover the objective function here is concave so that a solution to the first order condi-

tions will be a maximum (for its proof, see Proposition 7 in the Appendix). By (4) and (5),

we have

E[
A

B
−

1

B
(qi + qj) − c′i(qi)] = 0, and E[

A

B
−

1

B
(qi + qj) − c′j(qj)] = 0 (6)

since




∂q1

∂Q1

∂q2

∂Q1

∂q1

∂Q2

∂q2

∂Q2



 =





β1

B+β1+β2
− β1β2

(B+β1+β2)(B+β2)

− β1β2

(B+β1+β2)(B+β1)
β2

B+β1+β2



 (7)

and the determinant of this matrix is Bβ1β2

(B+β1+β2)(B+β1)(B+β2) > 0.

From (1), we have

p− dci/dqi = [qi − (Q̄i +Qi)]/(B + βj) (8)

and so by (6) we can deduce that

E[qi] = Q̄i +Qi (9)

i.e. generator i’s expected spot market generation equals its full contract volume. The same

is true for generator j.

Again from (6), the retailer should set the contract volumes for each of the two generators

so that the marginal generation cost of the generator in the spot market equals its marginal

utility of consumption, which implies an optimal generation level in terms of social welfare.
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Moreover, the expected spot market price is equal to the marginal generation cost of each of

the two generators, i.e.

E[p] = E[c′1(q1)] = E[c′2(q2)] (10)

which implies that the expected social welfare is maximized at this market outcome, since

the social welfare is the sum of profits of all market participants and is equal to the retailer’s

utility less the generation cost in our case.

From this and the fact that E[q1 + q2] = A − Bp (where we write A for E[A]) we can

deduce that

E[q1] =
AD2 + C2 −BC1D2 − C1

D1 +D2 +BD1D2
, (11)

E[q2] =
AD1 + C1 −BC2D1 − C2

D1 +D2 +BD1D2
(12)

E[p] =
AD1D2 + C1D2 + C2D1

D1 +D2 +BD1D2
(13)

and from (9) the best choice of contract volumes are given by

Qi = E[qi] − Q̄i, Qj = E[qj ] − Q̄j. (14)

As we have already noted, the retailer should set the contract prices so that the two

generators are better off by entering into the contracts than they would be otherwise. Thus

for generator i, the contract price is

fi = E[p] +
Π

(0,0)
i −E[pqi − (p− f̄i)Q̄i − ci(qi)]

Qi
, i = 1, 2. (15)

To summarize, we have established the following proposition.

Proposition 2 The spot market output under the contract schemes in (3), where neither

of the two generators has an existing over-contracted position, maximizes the expected social

welfare and the expected spot market price is equal to the expected marginal generation cost of

each generator. Moreover, each generator’s total final contract volume is equal to its expected

spot market generation.

Now we can return to the question of whether the solution we have derived will lead to

the appropriate Nash equilibrium in the game played between the two generators. We are
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assuming that the retailer does not change its contract offer to one generator according to

whether or not its contract offer to the other is accepted.5

The proposition below establishes that both generators accepting the contract offer set by

the solution of (3) corresponds to a unique Nash equilibrium of the take-it-or-leave-it game

for the two generators. This requires two preliminary observations on generator profits (parts

(a) and (b) of the proposition).

Proposition 3 (a) For any given demand shock A, for each generator, the attractiveness

of entering a contract with the retailer is enhanced if the other generator is already

contracted, i.e.for i, j = 1, 2, i 6= j

π
(i,j)
i − π

(0,j)
i > π

(i,0)
i − π

(0,0)
i ;

(b) For any given demand shock A, for a generator that is contracted less than the amount

it is dispatched in the spot market, its overall profit decreases when the other generator

increases its contract cover (and increases if it is contracted more than it is dispatched);

(c) Accepting the contract offers set by (3) is the unique Nash equilibrium of the take-it-or-

leave-it game for the two generators, in which each maximises its expected profit..

Proof: See Appendix.

We give an example with the demand function for the retailer and cost functions of the

generators taken from [Green, 1999, p.117]. The demand function is 45−0.5p and two identical

generators have a cost function of q2. That is, A = 45, B = 0.5, C1 = C2 = 0,D1 = D2 = 2

in our notation. We suppose that neither of the two generator has any existing contracts

initially. Table 1 lists the contract and spot market outcomes. Note that the contract price is

the break-even price for the two generators. If the retailer wants to ensure that the generators

will accept its contract offers, then the contract price will need to be set marginally higher.

4 Strategic contracting by the retailer

We have already mentioned that the constraints imposed on the retailer’s contract offers in (3)

may be unnecessarily restrictive. We can ask the question as to how the retailer should behave

5As we mentioned above, Green [1999] has discussed the importance of this assumption. From the point of

view of the generator we are making a Cournot assumption on conjectural variations in the contract market.

Within Green’s framework this would imply that generators would not choose to enter into any contracts with

the retailer.
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competitive SFE with no contract under new contracts

market price 30 40.25 30

contract price N/A N/A 38.06

contract volume N/A 0 30

total generation 30 24.87 30

retailer profit 900 618.7 658.18

generator profit 225 345.91 345.91

social welfare 1350 1310 1350

Table 1: The multi-stage game model (3) produces competitive generation outputs

in order to maximise its profit? One possibility is to choose just one of the two generators

to contract with. This is equivalent to setting either Qi or Qj to zero. Suppose the retailer

contracts with generator i , then the retailer’s problem is

max
(f,Qi)

E[A
B
q − 1

2B
q2 − pq + (p− f̄i)Q̄i + (p− fi)Qi + (p− f̄j)Q̄j ]

such that E[pqi − (p − f̄i)Q̄i − (p− fi)Qi − ci(qi)] ≥ Π
(0)
i

(16)

where Π
(0)
i is the expected profit of generator i when it does not accept the contract (f,Qi)

and q = qi + qj is the total spot market generation. As before, once Qi is fixed, fi will be

chosen to make the constraint satisfied with equality. Thus the retailer solves

max
Qi

E[A
B
q − 1

2B
q2 − pqj − ci(qi) − Π

(0)
i + (p − f̄j)Q̄j]

So the first order conditions for this problem reduce to

E[(
A

B
−

1

B
q)
∂q

∂Qi

− qj
∂p

∂Qi

− p
∂qj
∂Qi

+ Q̄j
∂p

∂Qi

− c′i(qi)
∂qi
∂Qi

] = 0.

The second derivative conditions show that the objective function here is concave (for its

proof, see Proposition 7 in the Appendix), so a solution to the first order conditions will be a

maximum. Hence the optimal contract volume Qi satisfies

E[p − c′i(qi)]
∂qi
∂Qi

− E[qj + Q̄j]
∂p

∂Qi
= 0. (17)

Using (8), and since ∂qi/∂Qi = ψii and ∂p/∂Qi = −ξi, we can simplify (17) to

E[qi] + E[qj] − Q̄i − Q̄j −Qi = 0.
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Thus we have established that the total contract volume for the retailer is the expected total

spot market generation, i.e., the retailer is fully contracted; and the new contract volume for

generator i is the expected total spot market generation less the existing contract volumes

that the retailer holds.

Now from Proposition 1, we have

E[qi] = E[q
(0)
i ] +

βi

B + βi + βj

Qi, E[qj ] = E[q
(0)
j ] −

βiβj

(B + βi + βj)(B + βj)
Qi.

where q
(0)
i , q

(0)
j are the dispatch quantities if the generator i does not accept the contract

(f,Qi). Hence the optimal contract volume is

Qi =
(E[q

(0)
i ] + E[q

(0)
j ] − Q̄i − Q̄j)(B + βi + βj)(B + βj)

(B + βj)2 + βiβj
,

and the contract price is given by

f = E[p] +
Π

(0)
i − E[pqi − (p − f̄i)Q̄i − ci(qi)]

Qi

where the spot market price p is given in Proposition 1 with xi = Q̄i +Qi and xj = Q̄j .

In the following example of Table 2, the retailer has a demand function A−Bp = 45−0.5p

and generator 1 and generator 2 have cost functions of q + q2 and 4q + 1.25q2 respectively.

Neither of them has a pre-existing contract. In the table, C stands for the fully competitive

case, EC stands for the case with contracting prices and volumes set by (15) and (14) respec-

tively, G1 = contracting generator 1 only, G2 = contracting generator 2 only. In the contract

item fields, the first component of the pair of numbers is the contract price and the second is

the contract volume.

We can see that the retailer makes a greater profit from choosing to contract with just

one generator, with it being preferable to contract with generator 1 (which has lower costs).

In this arrangement the generator who is not offered a contract does poorly and the overall

social welfare is below that achieved in the absence of any contracts.

5 Competition between retailers

In this section we consider a situation with competition for contracts between different re-

tailers. Suppose that there are two retailers: retailer 1 has a demand function A1 − B1p and

retailer 2 has a demand function A2 −B2p. There are different ways in which the competition

13



C SFE EC G1 G2

spot market price 33.64 43.35 33.64 32.8 34.76

total generation 28.18 23.32 28.18 28.6 27.6

contract (gen 1) N/A N/A (40.52, 16.32) (38.08, 28.6) (0,0)

contract (gen 2) N/A N/A (42.05, 11.86) (0,0) (39.06, 27.62)

gen 1’s generation 16.32 12.82 16.32 20.91 10.2

gen 2’s generation 11.86 10.5 11.86 7.69 17.4

gen 1’s profit 266.39 378.57 378.57 378.57 240.62

gen 2’s profit 175.74 275.45 275.45 147.53 275.45

retailer profit 794.03 544.02 582.14 667.08 644.17

social welfare 1236.16 1198.04 1236.16 1193.19 1160.23

Table 2: Effects of the retailer’s contracting strategy on market outcomes

between the retailers might take place. To begin with we suppose that the retailers offer

the two generators contracts simultaneously. We continue to assume that generators will not

enter into contracts if their profits are reduced due to the contract agreements with the two

generators. Throughout this section we will assume that the two retailers know the generation

costs of the two generators and their demand functions.

Denote the contracts offered by retailer 1 to generators i, j by (fi, Qi) and (fj, Qj) re-

spectively and the contracts from retailer 2 to the two generators by (gi, Ri) and (gj , Rj)

respectively (where the first component is the contract price and the second is the contract

volume as before).

We look for a Nash equilibrium in the contract game played between the two retailers. If a

Nash equilibrium exists then the contracts are determined by the following utility maximiza-

tion problems:

max
(fi,Qi),(fj ,Qj)

E[A1

B1
u− 1

2B1
u2 − p u+ (p− fi)Qi + (p− fj)Qj ]

such that E[pqi − (p− fi)Qi − (p− gi)Ri − ci(qi)] ≥ Π
(0,0)
i ,

E[pqj − (p− fj)Qj − (p− gj)Rj − cj(qj)] ≥ Π
(0,0)
j

(18)
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and

max
(gi,Ri),(gj ,Rj)

E[A2

B2
v − 1

2B2
v2 − p v + (p− gi)Ri + (p − gj)Rj ]

such that E[pqi − (p− fi)Qi − (p − gi)Ri − ci(qi)] ≥ Π
(0,0)
i ,

E[pqj − (p − fj)Qj − (p − gj)Rj − cj(qj)] ≥ Π
(0,0)
j

(19)

where Π
(0,0)
i ,Π

(0,0)
j are the expected spot market profit of generator i and generator j when

neither generator accepts the contract offers; u = A1 − B1p and v = A2 − B2p are the

consumptions of retailer 1 and retailer 2, respectively; and the spot price p and the generation

quantities q1, q2 when the contract offers are accepted are as given in Section 2 with A =

A1 +A2 and B = B1 +B2.

In the same way as the derivation in Section 3, we can obtain the first order optimality

conditions with respect to the contract volumes of (18) and (19). Using the identity q1+q2−u =

v, we can show




∂q1

∂Q1

∂q2

∂Q1

∂q1

∂Q2

∂q2

∂Q2









E[p− c′1(q1)]

E[p− c′2(q2)]



 =





E[R1 +R2 − v] ∂p
∂Q1

E[R1 +R2 − v] ∂p
∂Q2



 (20)

and




∂q1

∂R1

∂q2

∂R1

∂q1

∂R2

∂q2

∂R2









E[p − c′1(q1)]

E[p − c′2(q2)]



 =





E[Q1 +Q2 − u] ∂p
∂R1

E[Q1 +Q2 − u] ∂p
∂R2



 . (21)

Now the two matrices on the left hand side are equal (and given by (7) ) and ∂p/∂Q1 =

∂p/∂R1, and so with optimal contracts the expected uncontracted exposure for the two re-

tailers will be equal, that is Qi +Qj − E[u] = Ri +Rj − E[v].

Lemma 4 At the equilibrium point the two retailers are fully contracted, that is E[u] = Q1 +

Q2 and E[v] = R1 +R2.

Proof: See Appendix.

From this lemma and (20) we have

E[p] = E[c′1(q1)] and E[p] = E[c′2(q2)],

that is, the expected spot market price is equal to the expected marginal cost of generation.

Consequently the expected social welfare is maximized at this equilibrium.

The equation E[p] = E[c′i(qi)] also implies that each generator is contracted the same

amount as it expects to be dispatched, because E[p − c′i(qi)] = (E[qi] − (Ri + Qi))/(B + βj)

for i = 1, 2.

15



Now we show that the solutions to (18) and (19) are Nash equilibria of the game (18)

and (19) by showing that the Hessian of the Lagrangian function of each of (18) and (19) is

negative semi-definite. We only show this for (18) since the other is similar.

We need to be careful about the choices of the prices f1 and f2, so rather than eliminate

them we retain the constraints and form the Lagrangian. The KKT conditions with respect

to f1 and f2 then imply that the unique Lagrange multipliers for both of the constraints are 1

(we do not deal with the cases where either Qi = 0 or Qj = 0 or Qi = Qj = 0 since the

analysis for them are the same).

Given the Lagrange multipliers, the Lagrangian of the problem (18) is

L(fi, fj , Qi, Qj) = E[A1

B1
u− 1

2B1
u2 − p u+ p(qi + qj) − ci(qi) − cj(qj)

−(p− gi)Ri − (p − gj)Rj − π
(0,0)
i − π

(0,0)
j ]

which is independent of fi, fj. From Proposition 7 we know that L is a concave function

of Qi, Qj . So any solution to the first order conditions of (18) or (19) is a maximizer of the

problem. Hence, any solution to the joint system of the first order conditions of (18) and (19)

is a Nash equilibrium of the game.

Therefore, based on the analysis above, we have the following proposition.

Proposition 5 At a Nash equilibria for (18) and (19) between the two retailers:

(a) the expected spot market price is equal to the expected marginal cost of generation;

(b) the expected generation of each generator is equal to its total contract volume;

(c) the expected consumption of each retailer is equal to its total contract volume.

Moreover any solution which satisfies (b) and (c) and has contract prices that make the

inequalities of (18) satisfied with equality, is a Nash equilibrium.

We can calculate the expected total generation levels for each generator; just as before they

are given by the expressions (11)-(12). So this determines Q1 + R1 and Q2 + R2. Moreover

the consumption of each retailer is determined from the spot price level which fixes Q1 +Q2

and R1 + R2, the total contract volumes for the two generators. However there is still one

degree of freedom, and so the individual contract quantities are not determined.

Moreover, even if we fix the contract quantities, we will not be able to determine the

contract prices from the fact that the constraints in (18) and (19) are binding, unless we add
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a further restriction, such as asking that the prices offered to different generators by a single

retailer are the same. The indeterminancy in contract prices is more significant than that in

contract quantities, since it affects the profits for the two retailers.

The difficulty of coordinating on a single equilibrium if contracts are offered simultaneously

makes it interesting to consider an alternative possible mechanism in the contract market. We

suppose that retailer 1 acts as the leader and announces its contract volumes and one single

contract price for the two generators and retailer 2 observes the contract positions of retailer 1

and offers its own contracts to the two generators. Further we suppose that if the contract

prices needed from retailer 2 to compensate the two generators are too high (so that its profit

is worse than by not entering any contracts), then there will be no contracts between the

retailers and generators. Therefore, retailer 1 needs to give an incentive to retailer 2 to sign

contracts with the two generators. We can represent the resulting problem as follows:

max
f,Qi,Qj

E[A1

B1
u− 1

2B1
u2 − p u+ (p− f)(Qi +Qj)]

such that















































E[ 1
2B2

v2 + (p− gi)Ri + (p− gj)Rj ] ≥
(E[A2]−B2ξ0)2

2B2
,

and p, gi, gj , Ri, Rj are given by the solution to:

max
(gi,Ri),(gj ,Rj)

E[A2

B2
v − 1

2B2
v2 − p v + (p − gi)Ri + (p− gj)Rj ]

such that E[pqi − (p− f)Qi − (p− gi)Ri − ci(qi)] ≥ Π
(0)
i ,

E[pqj − (p− f)Qj − (p − gj)Rj − cj(qj)] ≥ Π
(0)
j ,

(22)

As before u = A1 −B1p and v = A2 −B2p are the consumptions of retailer 1 and retailer 2; p,

qi and qj are the market price and generation quantities when all contracts are accepted; and

Π
(0)
i ,Π

(0)
j are expected generator profits when contracts are not accepted. We have slightly

simplified the formulation by observing that v2/(2B2) is the surplus of retailer 2 from con-

suming v units of electricity, since A2v/B2 − v2/(2B2) − pv = v2/(2B2).

In this leader-follower environment we have the following proposition.

Proposition 6 If the contracting takes place according to (22) then:

1) the expected spot market price is equal to the expected marginal cost of generation which

implies that the social welfare is maximized;

2) the expected consumption of each of the two retailers is equal to its total contract volume;

3) the expected generation of each of the two generators is equal to its total contract volume.
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Proof: See Appendix.

From this result and Proposition 5 we see that a solution to this system will also be a

solution to (18) and (19). We can show that the contract price offered by the leader (retailer 1)

is unique. However, the other quantities such as Qi, Qj may not be unique. Therefore, there

will be different optimal contract offers by the follower (retailer 2) uniquely depending on

Qi, Qj . The profits and the total contract volume for each of the retailers and generators, and

spot market price are unique, i.e., independent of the optimal contract offers.

We conclude this section by giving a numerical example in Table 3 to the above model. In

this example, we have two generators with their cost functions as given in Section 3 and two

retailers with symmetric demand functions A1 = A2 = A/2 = 22.5, B1 = B2 = B/2 = 0.25

where A,B are given in Section 3.

We implement the model (22) in the General Algebraic Modeling System (GAMS).6 The

contracts offered by retailer 1 are: (36.75, 7.56) for generator 1 and (36.75, 7.44) for generator 2;

contracts offered by retailer 2: (39.39, 7.44) for generator 1 and (39.35, 7.56) for generator 2.

Recall that all the first components of the contracts are the contract prices and the second are

the contract volumes. The consumptions by the two generators are equal, 15 units each for

the fully competitive and contracted cases and 12.44 units for the no contract case. We can

see that in this leader-follower arrangement the full additional retailer benefit (in comparison

with the supply function equilibrium without contracts) flows to retailer 1.

6 Conclusions

Contracts are traditionally used to manage market participants’ financial risks arising from

the random variation in market prices and uncertainties in the production processes. In this

paper we have examined a wholesale electricity contract market in which retailers set the

terms of the contracts, but need to make these attractive to the generators. With this model,

it is natural to assume that there is a contract premium even when the market participants

are risk neutral. We have shown that contracts can play a strategic role in determining market

6We reformulate the problem as an ordinary nonlinear programming problem by replacing the follower’s

problem with its first order optimality conditions. We take advantage of the strict complementarity conditions

between the two constraints and their Lagrange multiplers (In general, this will lead to a mathematical program

with complemenarity constraints, see Luo et al. [1996]). So, in our formulation, these two constraints become

equality constraints and the conditions corresponding to the derivatives with respect to Ri, Rj are (21). So we

can call nonlinear programming solvers in GAMS to solve the reformulated problem.
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competitive SFE with no contract under contracts of (22)

market price 30 40.25 30

total generation 30 24.88 30

retailer 1 profit 450 309.39 348.79

retailer 2 profit 450 309.39 309.39

generator 1 profit 225 345.91 345.91

generator 1 profit 225 345.91 345.91

social welfare 1350 1310.6 1350

Table 3: Outcomes of contracting procedures under (22)

outcomes, since there is a benefit to the retailers in offering contracts. The results in Section 3

and Section 5 show that, under a variety of mechanisms, allowing strategic contract bids by

retailers will give spot market outcomes where the marginal cost of generation is equal to the

marginal utility of consumption, and hence social welfare is maximized.

7 Appendix

Proof of Proposition 1

The optimal linear supply function offered by generator i satisfies

αi + βip = si(p) = xi + [p− Ci −Di(αi + βip)](B + βj)

= xi − (Ci +Diαi)(B + βj) + (1 −Diβi)(B + βj)p

for any p. Therefore, the coefficients (α1, β1, α2, β2) of the equilibrium supply curves are a

solution to the following quadratic system:

α1(1 +D1B) + C1β2 +D1α1β2 = x1 − C1B,

β1(1 +D1B) − β2 +D1β1β2 = B,

α2(1 +D2B) + C2β1 +D2α2β1 = x2 − C2B,

β2(1 +D2B) − β1 +D2β2β1 = B.

(23)

The unique upward sloping solution to the above system is as given in the proposition

statement.
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Given these supply offers, the spot market price, which depends on the demand A, is

p(x1, x2) =
A− α1 − α2

B + β1 + β2

=
A+ C1β1 + C2β2 − (1 −D1β1)x1 − (1 −D2β2)x2

B + β1 + β2

=
A+ C1β1 + C2β2

B + β1 + β2
−

1 −D1β1

B + β1 + β2
x1 −

1 −D2β2

B + β1 + β2
x2.

This has the form we require, since (1 −Diβi)(B + βj) = βi.

The first generator is dispatched a quantity

q1(x1, x2) = α1 + β1p

= β1ξ0 − C1β1 + (1 −D1β1 − β1ξ1)x1 − β1ξ2x2

= β1(ξ0 − C1) +
β1

B + β1 + β2
x1 − β1ξ2x2

which gives the coefficients we claim. A similar argument applies for the second generator. �

Proof of Proposition 3

(a) From the expressions for the profit under different scenarios we have

π
(i,0)
i − π

(0,0)
i = p(i,0)(q

(i,0)
i − Q̄i −Qi) − p(0,0)(q

(0,0)
i − Q̄i) + fiQi − ci(q

(i,0)
i ) + ci(q

(0,0)
i )

= (p(0,0) − ξiQi)(q
(i,0)
i − Q̄i −Qi) − p(0,0)(q

(0,0)
i − Q̄i) + fiQi − ci(q

(i,0)
i ) + ci(q

(0,0)
i )

= p(0,0)Qi(ψii − 1) − ξiQi(q
(i,0)
i − Q̄i −Qi) + fiQi − ci(q

(i,0)
i ) + ci(q

(0,0)
i ).

Similarly:

π
(i,j)
i − π

(0,j)
i = p(0,j)Qi(ψii − 1) − ξiQi(q

(i,j)
i − Q̄i −Qi) + fiQi − ci(q

(i,j)
i ) + ci(q

(0,j)
i ).

Hence

(π
(i,j)
i − π

(0,j)
i ) − (π

(i,0)
i − π

(0,0)
i )

= (p(0,j) − p(0,0))Qi(ψii − 1) − ξiQi(q
(i,j)
i − q

(i,0)
i ) − ci(q

(i,j)
i ) + ci(q

(0,j)
i ) + ci(q

(i,0)
i ) − ci(q

(0,0)
i )

> −ξjQjQi(ψii − 1) + ξiQiQjψij

using the fact that c(x) + c(x+ a− b) < c(x− b) + c(x+ a) if a > 0, b > 0 (since c is convex

(a+ b)c(x) < ac(x− b) + bc(x+ a) and (a+ b)c(x+ a− b) < bc(x− b) + ac(x+ a)).

Now, as ψii < 1 and all other quantities are positive, we can deduce that

π
(i,j)
i − π

(0,j)
i > π

(i,0)
i − π

(0,0)
i .
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(b) Assume that a contract of size Qi has been accepted by generator i. Writing p, qi, πi for

the spot market price, dispatch quantity and profit of generator i in the spot market, we have

∂πi

∂Qj
= ∂p

∂Qj
[qi − (Q̄i +Qi)] + (p− dci

dqi
) ∂qi

∂Qj

= [ ∂p
∂Qj

+ 1
B+βj

∂qi

∂Qj
][qi − (Q̄i +Qi)]

= −
βj

(B+βi)(B+βj)
[qi − (Q̄i +Qi)]







< 0, if qi > Q̄i +Qi

≥ 0, if qi ≤ Q̄i +Qi

since p− dci/dqi = [qi − (Q̄i +Qi)]/(B + βj) by (1).

(c) Begin by fixing the random shock A. We will use part (b) to establish that π
(i,0)
i > π

(i,j)
i .

Consider the change in generator i profit as Qj is increased from zero. In order for ∂πi/∂Qj to

remain negative, we need to show that the dispatch quantity, qi, remains greater than Q̄i +Qi

over the range of values for Qj . But notice that the quantity qi is a decreasing function of Qj.

Thus qi ≥ q
(i,j)
i which is Q̄i +Qi from (9).

Since the solution to the retailer’s problem is constrained to have π
(i,j)
i ≥ π

(0,0)
i , we can

deduce that π
(i,0)
i > π

(0,0)
i . So the solution in which neither generator accepts the contract

offer is not a Nash equilibrium. Moreover, using part (a), π
(i,j)
i > π

(0,j)
i and from a similar

argument for generator j , π
(i,j)
j > π

(i,0)
j . Thus the solution in which each generator accepts

the contract offer is a Nash equilibrium, and is unique. Since this holds for any realisation of

the random shock A it also holds in expectation. �

Proof of lemma 4. First, we have

R1 +R2 − v = R1 +R2 − (q1 + q2 − u)

= (R1 +Q1 − q1) + (R2 +Q2 − q2) + u−Q1 −Q2

= −(B + β2)(p− c′1(q1)) − (B + β1)(p − c′2(q2)) + u−Q1 −Q2.

Let δ = Q1 +Q2 − E[u] be the expected value of the uncontracted exposure. So

(B + β2)E[p − c′1(q1)] + (B + β1)E[p − c′2(q2)] = −2δ.

But from the linear system (21), we can show that

E[p − c′1(q1)] = δ
(B + β1)(B + β2)

Bβ1β2
(β2

∂p

∂Q1
+

β1β2

B + β2

∂p

∂Q2
)
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and

E[p− c′2(q2)] = δ
(B + β1)(B + β2)

Bβ1β2
(
β1β2

B + β1

∂p

∂Q1
+ β1

∂p

∂Q2
).

Since ∂p/∂R1 = −ξ1, ∂p/∂R2 = −ξ2, we have

−2δ = (B + β2)E[p − c′1(q1)] + (B + β1)E[p − c′2(q2)]

= −δ (B+β1)(B+β2)
Bβ1β2

(B + β1 + β2)(β2ξ1 + β1ξ2)

= −2δ − δ β1+β2

B
.

after some algebra. Therefore δ = 0. �

Proof of Proposition 6. We considering retailer 2’s profit maximization problem. The first

order optimality conditions are derived in the same way as before, so that the conditions (21)

hold and the constraints are binding. Hence

E[pqi − (p− f)Qi − (p− gi)Ri − ci(qi)] = Π
(0)
i ,

E[pqj − (p− f)Qj − (p− gj)Rj − cj(qj)] = Π
(0)
j ,

Now we can reformulate the problem for retailer 1 as

max
f,Qi,Qj

E[A1

B1
u− 1

2B1
u2 − p u+ (p− f)(Qi +Qj)]

such that
E[ 1

2B2
v2 + pqi − (p − f)Qi − ci(qi)] − Π

(0)
i

+E[pqj − (p − f)Qj − cj(qj)] − Π
(0)
j ≥

(E[A2]−B2ξ0)2

2B2
,

recognizing that p, qi, qj depend on the values of Ri, Rj which arise from solving retailer 2’s

problem. In fact, from the results in Section 3, we know that Ri, Rj , gi, gj uniquely depend

on f,Qi, Qj and this dependence is continuous differentiable if Ri > 0, Rj > 0 or more gen-

erally the strict complementarity conditions hold between the constraints and corresponding

Lagrange multipliers (see Fiacco [1983] for example), since the strong second order sufficient

conditions hold at such solutions.

The optimality conditions for retailer 1’s problem turn out to be





∂q1

∂Q1

∂q2

∂Q1

∂q1

∂Q2

∂q2

∂Q2









E[p − c′1(q1)]

E[p − c′2(q2)]



 =





0

0



 (24)

and

E[
v2

2B2
+p(qi + qj)− (p−f)(Qi +Qj)− cj(qj)− ci(qi)]−Π

(0)
i −Π

(0)
j =

(E[A2] −B2ξ0)
2

2B2
. (25)
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Note that there is an important difference between the 2× 2 matrix appearing in (24) and

the one in (20), since now Ri, Rj are functions of Q1, Q2, not independent of them as in (20).

We need to determine the way that this dependence affects the various derivatives.

The follower’s optimality conditions imply that the system (21) holds. We will rewrite this

in terms of E[q1], E[q2] and the fundamental parameters of the problem making use of the

following identities:

E[u] = (B1E[q1] +B1E[q2] + E[BA1 −B1A])/B

and




E[p − c′1(q1)]

E[p − c′2(q2)]



 = −
1

B





1 +BD1 1

1 1 +BD2









E[q1]

E[q2]



 +
1

B





A−BC1

A−BC2





which is due to the identity E[p] = E[A] −B(E[q1] + E[q2]). So (21) becomes

Γ





E[q1]

E[q2]



 = Ψ





A−BC1

A−BC2



 − (BQ1 +BQ2 − E[BA1 −B1A])





−ξ1

−ξ2



 , (26)

where we have written

Ψ =





ψ11 −ψ21

−ψ12 ψ22



 , Γ = Ψ





1 +BD1 1

1 1 +BD2



 +B1





ξ1 ξ1

ξ2 ξ2



 .

Finally we can calculate the derivatives we require: taking derivatives of (26) with respect

to Q1 leads to

Γ





∂q1

∂Q1

∂q2

∂Q1



 =





Bξ1

Bξ2



 .

Now Γ is invertible because

det(Γ) = (ψ11ψ22 − ψ21ψ12)(B
2D1D2 +BD1 +BD2)

+BB1(ψ22D2ξ1 + ψ11D1ξ2 + ψ12D1ξ1 + ψ21D2ξ2) > 0

due to det(Ψ) = ψ11ψ22 − ψ21ψ12 > 0 and the fact that all other terms are strictly positive.

In fact, Γ is positive definite.

Let δ = Q1 +Q2 − E[u]. Then using (21), we have (24) given by

δ





∂q1

∂Q1

∂q2

∂Q1

∂q1

∂Q2

∂q2

∂Q2



 · Ψ−1 ·





ξ1

ξ2



 =





0

0



 .
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From the first component in this vector equation we can derive

δ · (ξ1, ξ2) · (Γ
−1)T · Ψ−1 ·





ξ1

ξ2



 = 0.

Let Λ = ΨΓT , which is the inverse of the 2 × 2 matrix in the left side of the above

equation. We show that Λ is positive definite by checking that both the top left element and

the determinant are positive. Now

Λ11 = [−ψ21 + ψ11(1 +BD1) +B1ξ1]ψ11 − [ψ11 − ψ21(1 +BD2) +B1ξ1]ψ21

= [BD1(B + β2)ξ1 + (B +B1)ξ1](B + β2)ξ1 − [(B +B1 −BD2β2)ξ1]β2ξ1

= ξ21 [BD1(B + β2)
2 +B(B +B1) +BD2β

2
2 ] > 0

and det(Λ) = (ψ11ψ22 − ψ21ψ12)det(Γ) > 0.

Thus Λ−1 is positive definite, which implies

δ = Q1 +Q2 − E[u] = 0

since (ξ1, ξ2) 6= (0, 0).

Therefore from (21), we have

E[p] = E[c′1(q1)] and E[p] = E[c′2(q2)],

that is, the expected spot market price equals the expected marginal cost of generation of

the two generators. Moreover, since E[p − c′i(qi)] = (E[qi] − (Qi + Ri))/(B + βj), we have

E[qi] = Qi + Ri for i, j = 1, 2, i 6= j. That is, generator i is fully contracted. Because

E[u] = Q1 +Q2, we have E[v] = E[q1 + q2 − u] = R1 +R2, that is, retailer 2 (the follower) is

also fully contracted.

Since E[qi], E[qj ] are determined by conditions E[p] = E[c′1(q1)] and E[p] = E[c′2(q2)]

(see (11), (12)), they are independent of how the two retailers offer the contracts; so are the

retailers’ expected consumptions, total contract levels and expected profits for all the retailers

and generators. Therefore f is uniquely determined in (25). �

Proposition 7 The following functions are concave:

(a) U(Q1, Q2) = E[A
B
q − 1

2B
q2 − ci(qi) − cj(qj) − π

(0,0)
i − π

(0,0)
j ]

(b) V (Qi) = E[A
B
q − 1

2B
q2 − pqj − ci(qi) + (p − f̄j)Q̄j − π

(0)
i ]
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(c)
L(Qi, Qj) = E[A1

B1
u− 1

2B1
u2 − p u+ p(qi + qj) − ci(qi) − cj(qj)

−(p− gi)Ri − (p− gj)Rj − π
(0,0)
i − π

(0,0)
j ]

Proof

(a) Using the fact that A
B
− 1

B
q = p we have

∂U

∂Qi

= E[p](
∂qi
∂Qi

+
∂qj
∂Qi

) − E[c′i(qi)]
∂qi
∂Qi

− E[c′j(qj)]
∂qj
∂Qi

.

Thus

∂2U

∂Q2
i

=
∂p

∂Qi
(
∂qi
∂Qi

+
∂qj
∂Qi

) − c′′i (qi)

(

∂qi
∂Qi

)2

− c′′j (qj)

(

∂qj
∂Qi

)2

= −ξ2i [B +Di(B + βj)
2 +Djβ

2
j ] (27)

since ∂qi/∂Qi = ψii = (B + βj)ξi and ∂qj/∂Qi = −ψji = −βjξi. Similarly

∂2U

∂Qi∂Qj
=

∂p

∂Qj
(
∂qi
∂Qi

+
∂qj
∂Qi

) − c′′i (qi)
∂qi
∂Qj

∂qi
∂Qi

− c′′j (qj)
∂qj
∂Qj

∂qj
∂Qi

= ξiξj [−B +Di(B + βj)βi +Dj(B + βi)βj ]

= ξiξjB

using the fact that 2B = Di(B + βj)βi +Djβj(B + βi) by (23). Hence the Hessian of U is

H(U) =





−ξ2i (B + γi) ξiξjB

ξiξjB −ξ2j (B + γj)





where γi = Di(B + βj)
2 + Djβ

2
j and γj = Dj(B + βi)

2 + Diβ
2
i . To establish that this is

negative definite we just need to check that ∂2U
∂Q2

1

< 0, which follows from (27), and show that

the determinant is positive. Now

det(H(U)) = ξ2i ξ
2
j ((B + γi)(B + γj) −B2) > 0

as required. So the Hessian is negative definite and hence the function is concave.

(b) We have

∂V

∂Qi
= E[(

A

B
−

1

B
q)
∂q

∂Qi
− qj

∂p

∂Qi
− p

∂qj
∂Qi

+ Q̄j
∂p

∂Qi
− c′i(qi)

∂qi
∂Qi

]

= E[p](
∂q

∂Qi
−
∂qj
∂Qi

) + E[Q̄j − qj]
∂p

∂Qi
− E[c′i(qi)]

∂qi
∂Qi

So

∂2V

∂Q2
i

=
∂p

∂Qi

(
∂q

∂Qi

−
∂qj
∂Qi

) −
∂qj
∂Qi

∂p

∂Qi

− c′′i (qi)(
∂qi
∂Qj

)2

= ξ2i (−(B + βj) − βj −Di(B + βj)
2) < 0

25



as required.

(c) We have

∂L

∂Qi
=

∂p

∂Qi
E[qi + qj − u−Ri −Rj] + E[p

∂(qi + qj)

∂Qi
− c′i(qi)

∂qi
∂Qi

− c′j(qj)
∂qj
∂Qi

]

=
∂p

∂Qi
E[qi + qj − u−Ri −Rj] +

∂U

∂Qi

Hence

∂2L

∂Q2
i

=
∂p

∂Qi

(
∂qi
∂Qi

+
∂qj
∂Qi

+B1
∂p

∂Qi

) +
∂2U

∂Q2
i

= ξ2i (−B +B1) +
∂2U

∂Q2
i

and

∂2L

∂Qi∂Qj

=
∂p

∂Qi

(
∂qi
∂Qj

+
∂qj
∂Qj

+B1
∂p

∂Qj

) +
∂2U

∂Qi∂Qj

= ξiξj(−B +B1) +
∂2U

∂Qi∂Qj

Thus the Hessian of L, is

H(L) = (B1 −B)





ξ2i ξiξj

ξiξj ξ2j



 +H(U)

which is the sum of a negative semi-definite matrix and a negative definite matrix (from (a)),

and hence is negative definite.
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