

Wind energy's diverse values

- Energy
 - depends on investment + operational costs compared against benefits of energy provision + alternative supply options
 - significant temporal + locational variability + uncertainty determined by desired energy services, combined investment + operational characteristics of all demand + generation
- Environmental
 - greenhouse emission reductions depends on other generation options and has relatively little temporal + locational variation
 - regional air + water benefits, amenity costs
- Social
 - possible investment + job outcomes with industry development

Facilitating the integration of wind energy into the Australian NEM - the role of market design

The wind facilitation challenge

- Maximise total energy, environmental + social values of wind
- For high wind penetrations, maximising energy value becomes more challenging
 - best' windfarm sites may be taken early
 - Increasingly significant integration costs
 - network connection + management, match of wind with existing Tx + Dx
 - security; particularly wrt possible large + unexpected aggregate regional or system-wide swings in wind power production
 - economic operation + investment; implications for other generation of highly variable + somewhat unpredictable low-operating cost wind power
- Key electricity industry issues
 - How well do industry arrangements mesh underlying economic energy value with commercial signals to market participants?
 - ...and in particular, wrt new technology + participants
 - Wind the first significant generation with a highly variable, somewhat unpredictable + non-storable primary energy source
 - Now testing the adequacy of industry arrangements around the world

Interactions with specific renewable policy support measures

Features of National Electricity Rules (NER)

- NEM covers all participating states:
 - A multi-region gross pool with intra-regional loss factors
 - Spot market hybrid 5/30 min (dispatch/commercial)
 - 8 Frequency Control Ancillary Services markets for < 5min
 - No capacity market or equivalent; participants determine unit commitment through energy spot market bidding strategy
 - Centralised projections day ahead, 1 week (STPASA),
 2 years (MTPASA) and 10 years (Statement of Opportunities)
 - Operated by NEMMCO (owned by states)
- Compulsory participants in NEM:
 - All dispatchable generators & links > 30 MW (unless intermittent)
 - Network service providers & retailers
- Networks
 - Regulated monopoly NSPs obliged to provide non-discriminatory access; technical connection standards, 'shallow' connection costs
- Outside formal NEM rules + arrangements...
 - Range of OTC + exchange derivative markets used to manage spot price risk + underpin investment

Facilitating the integration of wind energy into the Australian NEM - the role of market design

О

UNSW

The changing status of wind in the NEM

- Non-scheduled
 - Existing category for intermittent gen – wind treated as negative demand
 - Can only be curtailed for system security or key network issues
 - Don't pay for FCAS
 - Recent changes: technical connection standards relevant to wind generators
 Historical windfarm outputs published
 Centralised wind forecasting system (AWEFS) in progress

- Scheduled
 - South Australia
 currently requires
 new wind farms to
 register as
 scheduled
 - Submission of dispatch offers
 - Compliance with targets
 - Causer-pay for ancillary services
 - Ability to offer ancillary services
 - Publication of individual outputs:forecast, offered & actual

- Semi-Scheduled
 - Specifically intended for intermittent gen >30MW + compulsory from March 2009
 - Submission of dispatch offers
 - Causer-pay for ancillary services
 - Ability to offer ancillary services
 - Are treated as positive supply
- If involved in a constraint
 - Compliance with targets if less than forecast

Facilitating the integration of wind energy into the Australian NEM - the role of market design

7

Facilitating wind integration in the NEM

- Current market design relatively supportive
 - Supply/demand balance for energy + FCAS via gross pool, not mainly bilaterally
 - Transparent regional prices for all market participants that reflect considerable locational, temporal and uncertainty value of electricity
 - Potential for 5min rebidding lets all participants revise offers with improving forecasting information + creates strong incentives to enhance short-term operational flexibility
- Wind as non-scheduled generation
 - Generates whenever wind is blowing (possibly s.t. to N/W constraints)
 - Operate as "price takers" although high penetrations will impact prices
 - Value of wind energy depends on region + intra-regional location, + how regularly wind farms producing when spot prices are high can be reasonably good correlation seasonally and daily cycle
- Market enhancements
 - Historical SCADA information for major windfarms published
 - NEMMCO has interim and progressing major Forecasting System (AWEFS)
 - Forecasts from 5 min to 2 years, windfarm level and regional aggregations, + including uncertainty estimates
 - More formal participation by wind in the NEM a price of success

Facilitating the integration of wind energy into the Australian NEM - the role of market design

THE UNIVERSITY OF NEW SOUTH WALES • SYDNEY • AUSTRALIA

Elec9201 Electricity Industry Planning & Economics © UNSW 2005

Conclusions

- NEM
 - Infused with uncertainty a key to driving competition
 - Generators can rebid with 5 min notice, don't know dispatch beyond 5 min
 - Some success in commercialising costs + benefits
 - Spot/forward markets price current/future uncertainty for all generators
 - FCAS markets set frequency ancillary services costs
 - Principle of 'causer pays' although difficult in practice
 - Formal objectives of equal treatment... although difficult in practice

Wind

- Currently unscheduled generation + outside many NEM processes
 - NEMMCO has very limited opportunities to direct behaviour yet remains accountable for maintaining system security
- Already 'sees' many of NEM's commercial signals; reasonable that they 'see' more of costs + benefits they bring to NEM + society
- Wider environmental + industry development value needs to be recognised with 'external' policy support

Facilitating the integration of wind energy into the Australian NEM - the role of market design

