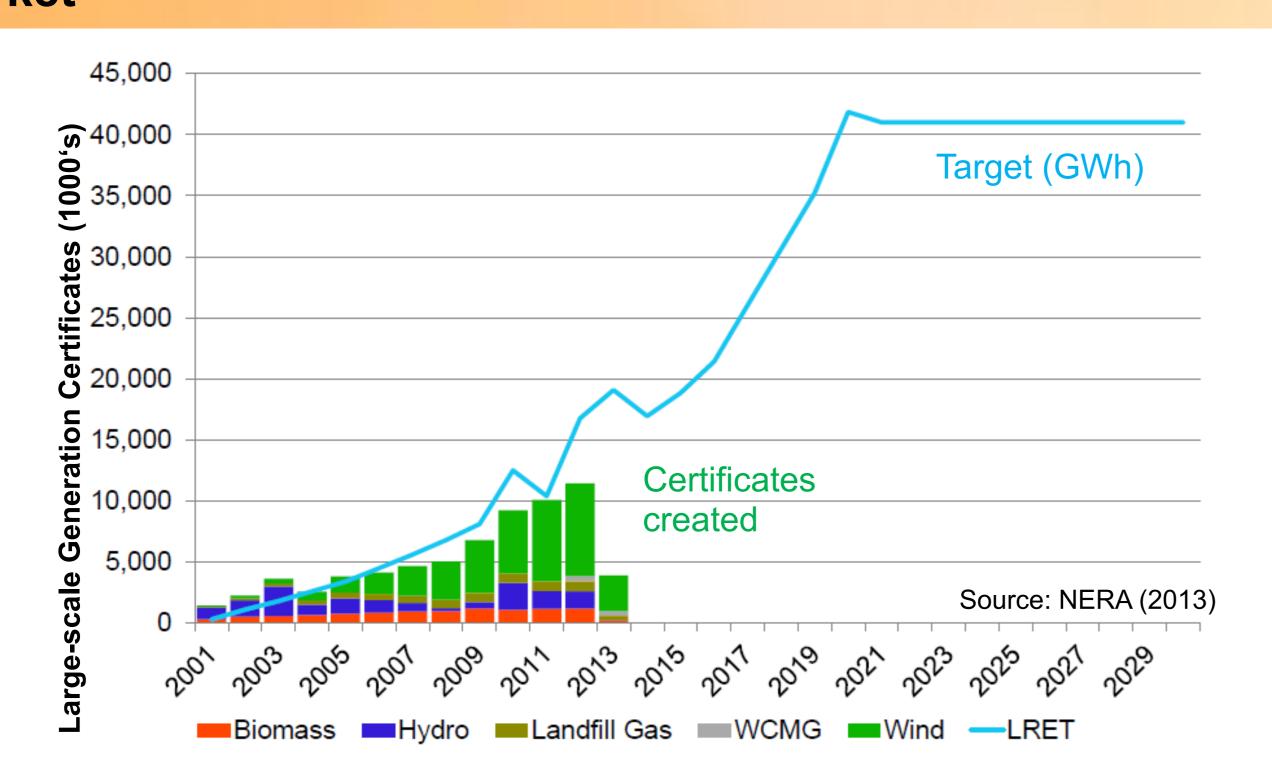


DISTRIBUTIONAL EFFECTS OF THE AUSTRALIAN RENEWABLE ENERGY TARGET (RET) THROUGH WHOLESALE AND RETAIL ELECTRICITY PRICE IMPACTS

Johanna Cludius (j.cludius@unsw.edu.au)^a, Sam Forrest^b, Iain MacGill^c


^aSchool of Economics and Centre for Energy and Environmental Markets, UNSW

^bCentre for Energy and Environmental Markets, UNSW

^c School of Electrical Engineering and Telecommunications and Centre for Energy and Environmental Markets, UNSW

The Australian Renewable Energy Target

- ♦ Goal: 20% of electricity demand met by RES by 2020
- **♦ Review of RET currently underway** —> Future uncertain
- ♦ Separate large-scale (LRET) and small-scale (SRES) schemes
 - ⇒ This research: Focus on LRET
- **♦ Liable parties (mainly retailers) must purchase certificates on the market**

Distributional Effects of the RET

♦ Wholesale prices lower due to merit order effect of wind generation

♦ Retail prices increase due to cost of policy being passed through to consumers

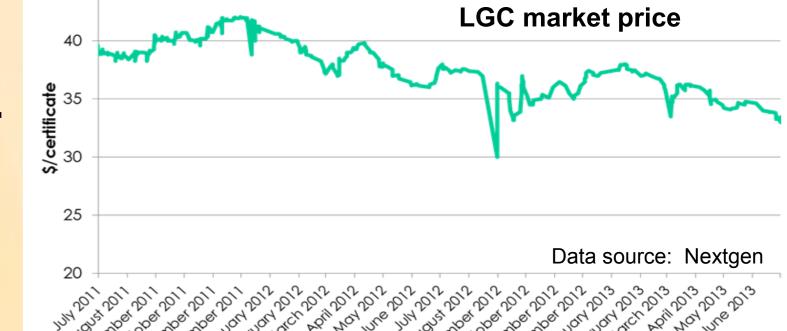
♦ Net effect depends

⇒ Exemptions for industry *Policy design*

⇒ Pass-through of costs and benefits *Wholesale and retail* market design and structure

The Merit Order Effect of Wind

♦ Time-series estimation of merit order effect of wind generation in the Australian National Electricity Market (NEM)


$$\ln(price_t) = c + \gamma \ln(price_{t-1}) + \alpha_1 wind_t + \beta_1 demand_t + \sum_i \mu_i S_{jt} + \eta_1 W_t + \varepsilon_t$$

- ⇒ Volume-weighted average price (truncated to reflect 'normal operating conditions')
- ⇒ Dependent on total demand (assumption: inelastic in the shortrun), wind feed-in, seasonal and weekend dummies
- ⇒ Tobit model employed

2011-12			2012-13					
R-squared		0.6594		R-squared		0.5301		
Root MSE		0.1908		Root MSE		0.2078		
Observatio	ns	17,568		Observatio	ns	17,520		
	Coefficient	S.E.	t-stat		Coefficient	S.E.	t-stat	
Price (t-1)	0.587338	0.006109	96.140	Price (t-1)	0.577430	0.007144	80.83	
Wind	-0.000060	0.000005	-12.530	Wind	-0.000039	0.000005	-7.48	
Demand	0.000030	0.000001	23.600	Demand	0.000032	0.000001	22.31	
Constant	0.791780	0.033021	23.980	Constant	1.062013	0.039886	26.63	
Add. Controls: Dummies for seasonal trends and weekends								
Total MO Effect -2.30 \$/MWh Total MO Effect -3.29 \$/MWh								

Indicative LRET Costs

- ♦ LRET costs for a retailer (\$/MWh) = Renewable Power Percentage x Certificate price (\$/MWh)
 LGC market
- ♦ Indicative LRET costs: Weighted average of LRET allowance in regulated retail tariffs

- \Rightarrow 3.38 \$/MWh for 2011-12
- \Rightarrow 5.29 \$/MWh for 2012-13
- ♦ Industry exemptions (equ. to ~15% of demand)
 - ⇒ 90% highly emissions intensive (esp. Aluminium)
 - ⇒ 60% moderately emissions intensive

Indicative Net Effects (\$/MWh)

	Small custo	Pass-through RET costs				
2011-12	on regualted	tariff 100%	40%	10%		
Pass-through	0%	3.38	1.35	0.34		
merit order	50%	2.23	0.20	-0.81		
effect	100%	1.08	-0.95	-1 <u>.96</u>		
		customer on Pass	-through RET	costs Large exemuser		
2012-13	110900	100%	40%	10%		
Pass-through	0%	5.29	2.11	0.53		
merit order	50%	3.64	0.47	-1.12		
effect	100%	1.99	-1.18	-2.77		

- ♦ Impact highly dependent on assumed pass-through rates
 - ⇒ Household price likely to rise
 - ⇒ Exempt industry price likely to fall ...at least in the short-run

The Role of Regulators

- ◆ Pass-through of merit order effect into regulated retail prices depends on methodology of estimating wholesale costs
 - ⇒ Standalone Long-run Marginal Cost (LRMC) approach fails to adequately consider impact of renewables on wholesale price
 - ⇒ Move to market-based methods in a number of jurisdictions

Political Implications

- ♦ Benefits and costs of RET could be distributed more equally
 - ⇒ Merit order effect likely overcompensates emissions intensive industry for contribution to cost of RET
 - ⇒ Costs to households could be reduced if exempt industry contributed to a larger extent and ...
 - ⇒ ... if methods for calculating wholesale costs in regulated retail tariffs reflected merit order effects

Limitations

♦ Long-term effects

- ⇒ Retirement of generation as a result of expansion of wind
- ⇒ Investment in generation / network capacity
- ⇒ Environmental and energy security benefits

Acknowledgements: Results have been published in Cludius, J.; Forrest, S.; MacGill, I. (2014): Distributional effects of the Australian Renewable Energy Target (RET) through wholesale and retail electricity price impacts. In *Energy Policy* 71 (August), pp. 40–51. The authors would like to thank Denzil Fiebig of the School of Economics (UNSW, Australia) for helpful comments. This work was supported through a range of funding sources including the Commonwealth Environment Research Facilities (CERF), an Australian Research Council (ARC) Discovery Grant and the Australian Renewable Energy Agency (ARENA). **Source:** NERA (2013): Projections of Wholesale Energy Costs. A Report for the Australian Energy Market Commission "Review of Retail Electricity Price Trends 2013". NERA Econ. Consulting. Sydney.

