

An economic assessment of Perth's hydrogen fuel cell buses

Colin Cockroft, Murdoch University and Anthony D Owen, CEEM, The University of New South Wales

25th Annual North American Conference of the USAEE/IAEE Denver, Colorado, USA: 18-21 September 2005

www.ceem.unsw.edu.au

Sustainable Transport Energy for Perth (STEP)

WA Government Funded 2 Year evaluation of Daimler Chrysler fuel cell powered buses

Natural Heritage Trust

Perceived Advantages

- Reduced Air Pollution
- Reduced Greenhouse Gases
- Sustainable transport fuel
- Reduced dependence on imported sources of energy

Societal Life Cycle Costs

- Total Societal Life Cycle Costs (\$/vehicle)
- Initial cost of vehicle (before tax)
- + PVLC (fuel + non-fuel operation and maintenance)
- + PVLC (full fuel cycle air pollutant damages + GHG emissions damage)
- + PVLC (full fuel cycle subsidies full fuel cycle taxes).

Method

- Capital Costs
 - Diesel
 - CNG
 - Fuel Cell Full economies of scale
- Fuel Costs
 - Steam Methane Reforming
 - Onshore Wind and Electrolysis
 - Mature industry assumptions
- Externalities
- Oil Supply Insecurity

Hydrogen Supply Cost Projections (\$US)

Technology	Future	Fuel cost	Other prod.	Transport	Refuelling	Future
	resource price	(US\$/GJ)	(US\$/GJ)	COSUS (US\$/GJ)	(US\$/GJ)	(US\$/GJ)
Gasoline/diesel	\$25-29/bbl	4-5	2	<1	2	8-10
Natural gas	\$3-4/GJ	3-4	n/a	<1	4	7-9
H_2 (gas) CO_2 seq.	\$3-5/GJ	3.8-6.3	1.2-2.7	2	5-7	12-18
H_2 (coal) CO_2 seq.	\$1-2/GJ	1.3-2.7	4.7-6.3	2	5-7	13-18
H_2 (biomass)	\$2-5/GJ	2.9-7.1	5-6	2-5	5-7	14-25
H_2 (wind-onshore)	3-4c/kWh	9.8-13.1	5	2-5	5-7	22-30
H ₂ (wind-offshore)	4-5.5c/kWh	13.1-18.0	5	2-5	5-7	27-37
H ₂ (solar-thermal)	6-8c/kWh	19.6-26.1	5	2-5	5-7	32-42
H ₂ (solar PV)	12-20c/kWh	39.2-65.4	5	2-5	5-7	52-82
H ₂ (nuclear)	2.5-3.5c/kWh	8.2-11.4	5	2	5-7	20-27
H_2 (HTGR cogen.)	n/a	n/a	8-23	2	5-7	15-32

Scenarios

- Base Case
- Scenario 1
 - Diesel and CNG costs increase by 3% per annum
- Scenario 2
 - Discount rate of 3%
- Scenario 3
 - Oil price of US\$50/bbl
- Scenario 4
 - Break even fuel costs

Base Case 7% discount rate Thousands \$1,200 \$1,000 GHG \$800 \$600 Maint E Fuel \$400 Capital \$200 \$0 FC (NG) FC (W) С D

Scenario 2

Results

Scenario 1

Scenario 3

Conclusion

- Sensitivity to discount rate
- Effects of externalities
- Reality check on capital cost and fuel cost targets
- Effect of oil price
- Cost of oil supply insecurity