

Does Wind Need Back-up Capacity?

Modelling the system integration costs of 'back-up'
capacity for highly variable generation
Jenny Riesz, Joel Gilmore and Iain MacGill

Presented by Iain MacGill

Associate Professor, School of Electrical Engineering and Telecommunications Joint Director (Engineering), CEEM

International Energy
Workshop (IEW)
Beijing, 4-6 June 2014

Wind Integration costs

- Conceptually simple and potentially useful:
 - estimation of costs imposed on power system by accommodating wind or other renewables with highly variable, non-storable primary resource
 - Policy makers can then be better informed of system-wide costs, benefits
 of introducing supporting policy and regulations for that technology
- Generally considered to include a range of potential aspects
 - Costs of additional operational/flexibility reserves to manage variability and uncertainty of wind generation.
 - Costs of additional transmission and connection assets.
 - 'back-up' capacity costs of matching variable capacity wind with some quantity of firm capacity (eg. OCGTs) when it is introduced into power system (eg. for making appropriate LCOE comparisons)

However in practice

- complex and very context specific to calculate
 - industry-wide costs, benefits of any particular generation technology depend upon integrated operation of all generation sources
 - Wind integration costs, benefits depends on rest of generation mix, nature of demand
- not applied equally to other generation technologies
 - Adding wind causes other units to cycle more, increasing their costs..
 but so does nuclear, coal baseload by shifting merit order
 - Where is discussion on integration costs of these technologies?
- even more challenging to allocate fairly
 - Wind 'causes' cycling costs only b/c inflexible thermal plant have high costs associated with cycling process; wind itself highly flexible
 - Instead, can argue that inflexible existing plant with high cycling costs are responsible for imposing these additional costs on system,

A better framework

- Costs caused by system as a whole, shouldn't arbitrarily be attributed to any particular participant. Instead, ideally
 - variable generators and loads that add net fluctuations to system would internalise (pay) costs associated with that increased variability, encouraging smoother operation if economically efficient.
 - inflexible generators with high cycling costs would pay those costs, encouraging upgrades, operational changes if economically efficient.
- Designing, implementing market that achieves this non-trivial
 - Requires prices that reflect all industry-wide costs, benefits that different participants bring to market, incentivizes them to invest and operate their generation, loads to maximize net system benefit.
 - In practice, fidelity of commercial arrangements varies greatly; efforts to improve internalization of relevant costs useful, but mustn't discriminate between technologies, or between existing, new participants

Particular problems with concept of 'Backup' capacity

Short term:

- Adding wind does not increase the firm capacity requirement
- System with sufficient firm capacity doesn't need more when wind is added

Long term:

- Generation mix will shift, partnering variable capacity with some quantity of firm capacity
- Not optimal to operate only with variable generation... but generally also not optimal to operate with any single technology (eg. only baseload).
- Generally a mix of high capital/low operating cost and low capital/high operating cost plant is optimal!
- But we don't talk about back-up cost of peaking plant when installing baseload to reflect its inherent economic inefficiency in supplying peak demand.

Study Aim & Methodology

- Explore concept of "back-up" capacity with illustrative system
 - Calculate changes in whole-of-system costs as wind is added
- Model:
 - Conventional deterministic residual load duration curve technique
 - Calculates least cost 'green field' mix of firm generation depending upon technology cost profiles, and a given demand profile
- Assumptions:
 - Half-hourly wind trace (scaled from existing NEM wind farms in 2010)
 - Half-hourly demand trace (Australian NEM in 2010)
 - Technology costs from Aust.
 Govt. 2012 AETA
 - No carbon price
 - Gas price: \$6/GJ (+20% for OCGTS)
 - MPC set for 0.002% USE

	Capital + FOM (\$k/ MW/yr)	SRMC (\$/ MWh)
Wind	197	0
Coal	254	26
CCGT	79	48
OCGT	51	84
USE (MPC)	-	4,300

Results - No Wind

Reference Scenario

Least cost mix:

	Capacity (GW)
Wind	0
Coal	18
CCGT	9.5
OCGT	5.2

Results - Low Wind Scenario

 Assume external mechanism supports development of 12.5 GW of wind (15% of energy)

Least cost mix:

	Capacity (GW)	
Wind	12.5	
Coal	13.4 Decreased from 18	
CCGT	12.3 Increased from 9.5	
OCGT	5.4	

Wind acts to shift firm generation mix from baseload to intermediate

Results - High Wind Scenario

 Assume external mechanism supports development of 25 GW of wind (29% of energy)

Least cost mix:

	Capacity (GW)	
Wind	25	
Coal	7.5 Decreased from 13.4	
CCGT	17 Increased from 12.3	
OCGT	5.9	

Wind acts to shift firm generation mix from baseload to intermediate

Summary – Installed capacity

 Increasing wind capacity drives displacement of baseload coal plant with intermediate CCGT

Summary – System Costs

- Wind generation acts to significantly reduce balance of system costs
 - Adding 12.5 GW of wind reduces other costs by \$1.5 bn (12%)
 - Adding 25 GW of wind reduces other costs by \$2.9 bn (24%)
 - Of \$4.9 bn invested in constructing 25GW of wind, 59% is offset by reduction in balance of system costs

Sunk costs

- What if wind is added to system with existing generation assets?
 - Fix generation mix at optimal levels, then add wind without generation mix adjustment
- Wind generation still acts to significantly reduce balance of system costs
 - Adding 12.5 GW of wind reduces other costs by 11%
 - Adding 25 GW of wind reduces other costs by 19%
 - Of \$4.9 bn invested in constructing 25GW of wind, 46% is offset by reduction in balance of system costs

A real system will lie between these two extremes (depending upon demand growth, age of plant, etc).

Reasonably expect cost of wind generation to be 46 – 59% offset by reduction in balance of system costs

Capacity value of wind

Wind capacity	Reduction in capacity requirement for balance of system	Capacity value of wind (% of nameplate capacity)
12.5 GW	1.8 GW	14%
25 GW	2.6 GW	10%

- Consistent with other studies
 - Using multiple years of data
- Repeated analysis assuming a zero capacity value for wind
 - Increased OCGT capacity as a non-operational reserve
 - Increased total costs by 0.7% and 0.9% (Low & High wind scenarios respectively)
 - Even in this very conservative case, 56% of cost of wind is offset by reduced cost for balance of system (compared with 59% without reserves)

Sensitivity – C price (\$55/tCO₂)+\$12/GJ gas

- Possible future costs in Australia
 - High gas price
 - Meaningful carbon price
- Under these conditions, least cost mix includes 19GW of wind generation (22% of energy)
 - Total system costs reduce as wind is added up to 19 GW
 - Reduction in balance of system costs more than offsets capital cost of wind investment

"Back-up" capacity concept

- Not meaningful to ascribe cost of 'back-up' capacity to wind generation
 - Adding wind does not create a requirement for additional capacity
 - Total capacity requirement of the system is not related to entry of wind
- Integration costs can be ascribed to any new entrant
 - Not just wind
- And cannot be allocated to any particular generator or technology
 - Costs will depend heavily upon the nature of the system itself, as well as the new entrant
- Must consider system as a whole

A more useful framework

- Consider capacity and energy requirements of a system to be properties of the demand profile
 - Requirement for capacity is created by demand, not the addition of wind
- Then compare different generation mixes that can best meet customer requirements for capacity and energy
 - Since customers ultimately create need for capacity and energy, they should pay for it, and generation options should be competing to provide these services most cost effectively
 - Generation options provide different mix of services, should be paid for what they provide (not penalised for what they don't)

System integration costs

- Aim should be to internalise system relevant effects as a price signal for generators
- Adding costs of one technology (eg. OCGTs) to another (eg. Wind) does not achieve this
 - OCGTs provide capacity without much energy, while wind provides energy without much capacity
 - They simply provide different services, and should be paid for what they provide (not penalised for what they don't provide)

Conclusions

- Wind acts to displace baseload capacity
 - Shifts investment to intermediate and peaking plant
 - Investors should cautiously assess any perceived need for baseload capacity when wind is being deployed
- Wind can significantly reduce balance of system costs over longer-term
 - ~45-60% of cost of wind generation offset by reduced balance of system costs.
- Concept of 'back-up' capacity as a system integration cost for wind is not meaningful, hence not useful
- Applying an additional "fee" to wind plants related to 'back-up' capacity does not appear to be an effective way of internalizing system costs
- A better approach:
 - Whole-of-system analysis, examining the implications of various technology mixtures for meeting the required demand profile
- Don't oversimplify
 - It's difficult to compare firm technologies (such as nuclear) and variable technologies (such as wind), and adding a simple "integration cost" is far too simplistic

Thank you

www.ceem.unsw.edu.au