

Promotion systems for electricity from renewable energy sources – Lessons learned from EU countries

Reinhard Haas Vienna University of Technology

1. Introduction

2. Historical developments

- **3. Success of strategies**
- 4. The success story of PV
- **5. Effects on electricity markets**
- 6. Conclusions

CORE MOTIVATION:

Policy targets for an INCREASE of RES-E!

e.g. 2020/20/20/20 targets

RES-E directive: increase share of RES-E from 12% 1997 to 22% in 2010)

ELECTRICITY GENERATION FROM "NEW" RENEWABLES IN EUROPE

REMARK ON RES – DEPLOYMENT IN THE EU-COUNTRIES

- Since about 1997 triggered by EUdirectives and EU initiatives
- Yet, specific country success stories very strongly related to national policies design!

3. SUCCESS OF STRATEGIES

SUCCESS CRITERIA FOR STRATEGIES

Costs (EUR/ kW)

Major objectives: increase the amount of electricity from renewables and reduce costs!

MW /Number of plants (=effectiveness)

PRICES OF CERTIFICATES

LEVEL OF FEED-IN TARIFFS

SUPPORT LEVELS: COMPARISON

TRADABLE CERTIFICATES

FEED-IN TARIFFS

Support (c/kWh)

kWh

HOW FEED-IN TARIFFS WORK

15

TRADABLE GREEN CERTIFICATES

THE SHAPE OF THE COST CURVE E U - 27

Producer surplus 160 Additional Cost-resource curve (RES-E in the EU27) 140 Marginal cost for generation 120 costs **Generation Cost** 100 [€/MWh _{ele}] 80 **Electricity market price** 60 40 Required 20 **RES-E** deployment 0 **Total**²⁰⁰ 600 800 400 1000 Additional (up to 2020) realisable potential for RES-E [TWh] costs

THE CASE OF SWEDEN

CONCLUSIONS (1)

IMPROVE/OPTIMIZE THE CURRENT SYSTEMS BEFORE HARMONISING OR IMPLEMENTING · A European Jiotralings Stan NuGless much higher burden for European citizens than a comparable FIT for meeting the 2020/20%RES target!

4. THE SUCCESS STORY OF PHOTOVOLTAIC DEPLOYMENT (IN GERMANY)

SINCE 2000: INVESTMENTS TU MAINLY IN RENEWABLES TECHNISCHE UNIVERSITÄT WIEN

5. EFFECTS OF PROMOTING RES-E ON ELECTRICITY MARKETS

IMPACT OF PV ON THE ELECTRICITY MARKET PRICE IN GERMANY

PV costs vs household TU electricity price in Germany Sche UNIVERSITY

Share on household electricity prices

[c/kWh]

Structure household electricity prices

Household electricity price structures 1980 - 2012 - 2030

[c/kWh]

Share on household electricity prices

6. Conclusions

(i) well-designed (dynamic) Feed-in tariff \rightarrow certain deployment of PV fastest and at lowest costs for society \rightarrow correct dynamic design!

- (ii) "Overheating" destroyed other markets (Czech Republic, Spain, Italy(?));
- (iii) Looming "grid-parity" for PV? → change to investment subsidies?
- (v) New market design will emerge
- (vi) New pricing mechanisms for end users

(vii) Regulated share on electricity prices will ₄₂ increase

INTERESTED IN FURTHER INFORMATION? Download reports from: www.eeg.tuwien.ac.at **E-Mail to:** Reinhard.Haas @ tuwien. ac.at

THE CASE OF SWEDEN

Major characteristics:

- * since 2002: quota-based system of Tradable Certificates
- * also "old" capacity allowed to fulfill quota
- * additional investment subs. for wind!

PRICES OF CERTIFICATES TU Energy IN SWEDEN TECHNISCHE UNIVERSITÄT WIEN

46

