

Melbourne University
Renewable Integration
Lab (MUREIL) •

Roger Dargaville, Mike Sandiford, Simon Caine and Robert Huva

Demand

Peak demand increasing faster than the average

Annual average demand stopped increasing in 2009

Demand Model

Demand model

Trend in optimal temperatures

Model performance: Victoria

Global warming impact on demand

MUREIL Overview

- Managing the short-term natural variability in renewables is a key challenge
- This variability can be reduced by intelligent design
- Different technologies have different characteristics in terms of reliability, cost and carbon footprints.
- MUREIL is a modelling system to find this optimal mix

WRF model setup

- •1.5x1.5 km resolution
- Nested in global reanalysis
- Surface short-wave radiation and wind speed at 30 minute increments

Site selection

Best sites for wind and solar farms - based on WRF output and producing a geographical spread

*note that actual best sites will change with longer simulation

**National Parks etc not masked in this scenario

Business as usual scenario

- No carbon price, high gas price
- •
- •Model selects a few good quality wind farms, but meeting demand with gas poses no variability issues

- Just wind and solar
- No requirement to always meet demand – just do the best possible

- Optimal mix of wind and solar to meet demand
- Gas fills in the gaps
- Wind dominates solar due to solar's higher expense and lack of supply at night
- Geographic distribution shows fairly even spread of wind stations

- 2 GW of pumped hydro available
- Results in 4.5 GW reduction in required generating capacity
- Solar becomes even less important

- Same scenario 2 but 1.5 GW shaved of demand
- 6 GW reduction in required capacity

Demand

20

Capacity (GW)

Wind

5

10

Simulation day number

Gas

15

Hydro

20

- Solar costs dramatically reduced (5 fold)
- Wind still dominates
- => it can't provide power after sun set for system with larger overnight demand

Summary

Conclusions

- MUREIL is currently at the prototype stage
- Additional functionality/features need to be added
 - National scale, annual scale, site masking
 - Additional technologies, i.e. wave, tidal, solar with storage, geothermal, biomass
 - Transmission network
 - Spot Market
 - Regulatory aspects
 - Water constraints
 - New optimisation algorithm
- Can also consider demand side response; time day pricing, energy efficiencies, electric vehicle fleet impact, DG impact

