

The role of bioenergy in a 100% renewable electricity system

Never Stand Still

Engineering

Dr Ben Elliston Centre for Energy and Environmental Markets University of New South Wales

b.elliston@unsw.edu.au

Outline

- Motivation
- Previous work on 100% RE in Australia
- 100% RE work at University of NSW
 - Reliability, system composition, costs
- Implications for bioenergy industry
- Summary

Motivation

- Long-lived electricity assets, uncertainty in policies, costs & technology
- Carbon budget vanishing quickly
 - ~26 years to 450 ppm
- Electricity is a big emitter in Australia
 - Electricity produces around 1/3rd of emissions
 - Many low carbon generation options
 - Some options not yet commercially available
 - eg. hot dry rock geothermal, wave power, CCS
 - The easiest sector to decarbonise?

100% RE studies

- Beyond Zero Emissions (2010)
 - Zero Carbon Australia Stationary Energy Plan
- UNSW (2010 present)
- AEMO 100% Renewables Study (2012)
 - No reference scenario
- NREL RE Futures Study for USA (2012)
 - Many scenarios
 - Focus on 80% RE, 20% existing fossil/nuclear

RE Futures: Average retail electricity price trajectory to 2050 under different penetration levels (`incremental' scenarios)

RE Futures: Average retail electricity price trajectory to 2050 under different penetration levels (`evolutionary' scenarios)

AEMO 100% Renewables Study

AEMO 100% Renewables Study

South Australia (actual)

Open cycle gas turbines

First simulations (summer 2010)

First simulations (winter 2010)

Hourly balancing mid-Jan 2010

Hourly balancing mid-June 2010

Technology cost data

Generation mix

5% discount rate, low end capital costs

What are the likely costs? (they're a bit lower now)

	Generation only		Including transmission	
Discount rate	Low	High cost	Low cost	High cost
5%	\$96	\$108	\$104	\$119
10%	\$135	\$154	\$153	\$173

Average cost of energy (2012 \$ per MWh)

Implications for bioenergy

- Flexible, dispatchable generators crucial to reliability
 - Adds to system inertia for AC frequency response
 - Fast start-up & ramping to balance variable renewables
 - Low minimum operating level
 - Small units (100-200 MW) may be sited close to fuel supply
- Flex-fuelled gas turbines could run on:
 - Numerous gaseous or liquid biofuels
 - Hydrogen or renewable methane (power-to-gas)
 - Renewable liquid fuels (power-to-liquids)
- Balancing energy is likely to be high value (MPC events)
- Supply and distribution will need to scale up

Summary

- Work to date suggests 100% RE technically and economically feasible
- Bioenergy crucial for reliability in our scenarios
- "Baseload" not required for 100% RE
 - Biomass could play a part, but will need low cost
 - Biomass more likely to compete with CST (mid-merit)
- Faces possible distant competition from e.g. power-to-gas or off-river pumped hydro

Thank you

Ben Elliston
b.elliston@unsw.edu.au

