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Abstract 
The electricity sector has a key role to play in the sustainable energy transition. The falling costs of wind 
and solar PV have added to both the opportunities yet also challenges of balancing sometimes competing 
industry objectives of costs, security, and environmental impacts. This paper presents novel techniques 
for assessing possible future industry generation portfolios in three ways: 1) incorporating explicit metrics 
for energy trilemma objectives into modelling, 2) using the optimization process of evolutionary 
programming to map the solution space of ‘high performing’, near least-cost, portfolio solutions, and 3) 
applying boundary min-max cases and clustering to categorize these varied portfolios to better facilitate 
planning and policy making. We use an open-source evolutionary programming tool, National Electricity 
Market Optimiser, to assess possible future generation portfolios for Indonesia’s Java-Bali interconnected 
power system. Our findings highlight the wide range of possible portfolios that might potentially deliver 
similar total industry costs, and their different security and environmental implications. In particular, 
additional solar photovoltaic deployment appears a low-risk opportunity to reduce costs and emissions 
compared to more fossil-fuel oriented mixes. Our novel techniques may be useful for the energy 
modelling community seeking to better understand and communicate complex, uncertain, and multi-
dimensional choices for electricity industry planning. 
 
Keywords: Clustering analysis; electricity industry; energy trilemma; generation portfolios; reliability; 
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1. Introduction 
 
The Paris Agreement in 2015 has created momentum for mitigation efforts from all jurisdictions, including 
developing countries, towards internationally agreed targets to avoid the worst impacts of climate 
change. The electricity industry has been recognized as a major contributor to climate change [1] and 
meeting these climate goals therefore requires transitioning electricity industries in many developing 
countries from heavily dominated by fossil-fuel based generation to low emissions generation future 
pathways. This transition is expected to include significant investment in large-scale renewable energy 
generation, with capacity expansion also required to meet a more dynamic growing electricity demand in 
industrializing countries. While the high cost of renewable energy technologies such as solar PV and wind 
has historically presented a barrier to a low emissions transition, the falling costs of these technologies 
now present a key opportunity, not just for environmental sustainability, but also for reducing industry 
costs and improving reliability by ensuring resource adequacy. 
 
Electrical power systems can draw upon numerous potential generation options, including a range of low 
or zero operating emission technologies, and deliver almost all energy services, including those currently 
supplied by liquid fuels and natural gas. However, the physical characteristics of electricity, and the large 



interconnected networks that most economically deliver it, also present specific challenges for managing 
security of supply, particularly in the context of developing countries.  
 
The high capital intensity and long lives of electricity sector assets, their differing contributions to system 
security, and varied environmental and wider societal impacts all pose considerable difficulties for energy 
planners seeking to balance social objectives of access and affordability, energy security and 
environmental sustainability. Indeed, the term energy trilemma [2] is often used to emphasize the 
potential tradeoffs involved across these objectives. A number of planning frameworks have used various 
quantitative metrics for each of these objectives to assess and compare the present sustainability of 
different electricity sector jurisdictions, changes in jurisdictions over time, and possible future scenarios 
Common industry metrics include total industry costs as a partial measure of affordability, expected 
unserved energy (USE) for security and carbon emissions (tCO2) for environmental sustainability. These 
comparisons often highlight that only a few developed countries have established the highest-balance 
scores for all trilemma dimensions [3], [4]. For developing countries, managing the energy trilemma is 
generally even more difficult as electricity infrastructure is typically insufficient to meet growing demand 
within an acceptable range of reliability, budget limitations can reduce options (particularly those with 
high upfront costs) while many of these countries also face a scarcity of fossil fuel resources.  
 
The extraordinary progress seen in wind and photovoltaic generation technologies over the past two 
decades has added to both the opportunities yet also challenges of jurisdictional industry planning to 
balance this energy trilemma. Costs have fallen to the extent that they are now competitive with 
conventional, largely fossil fuel-based options in some cases, while they have no, or at most very low, 
operating environmental impacts. However, they are both highly variable and only somewhat predictable, 
with no inherent energy storage [5], hence add to the challenges of maintaining security of supply [6]. 
 
A large and growing number of studies are undertaking generation capacity expansion planning with large 
scale renewable energy integration for different jurisdictions using various simulation and optimization 
methods and tools, which have been applied specifically to the task of assessing the total industry costs, 
achieved reliability and environmental outcomes [7], [8]. While linear programming, mixed integer 
programming, dynamic programming and evolutionary programming are widely utilized in those studies, 
the very large uncertainties associated with long term industry planning including future costs of different 
generation technologies, environmental policy drivers and possibly changing reliability preferences 
(particularly with new distributed energy technologies) are, if considered at all, typically addressed 
through the use of sensitivity studies and scenario analysis [9]. Other than that, those studies on the 
context of developing countries – which have very different levels of achieved reliability to that enjoyed 
by industrialized economies – have applied reliability targets for highly developed electricity sectors, for 
example by considering no unmet energy in typical studies of developing countries’ long-term planning 
with bottom-up accounting model [9], which may inappropriately slant analysis outcomes towards higher 
cost solutions.  
 
A recent study conducted evaluation of different energy scenarios that are supporting a more resilient 
low carbon energy system [10]. While energy trilemma index has been utilized in the analysis, this study 
was focused on the assessment of single optimum solution conducted using a mix-integer programming 
tool considering several generation scenarios and interconnection options. Moreover, key uncertainties 
surrounding future electricity industry planning, such as future costs and environmental policy drivers, 
however, have not been addressed. Other study has conducted assessment on the required CO2 
abatement costs from electrification and CO2 mitigation tradeoffs for the future generation mix in Java-
Bali grid system, Indonesia, given various emissions reduction targets [11]. While this study has stressed 



on the tradeoffs analysis between electrification and emissions reduction targets, none of the technical 
characteristics associated to variable renewable energy penetrations, such as temporal variability and / 
or uncertainty due to resource output fluctuation, is discussed and applied.  
 
Few recent studies have explicitly incorporated uncertainties beyond the use of sensitivity and scenarios 
analysis within the context of generation expansion planning. Uncertainty regarding the costs of different 
generation technologies involving coal, OCGT and CCGT have been explored to obtain a range of expected 
generation costs of portfolios, expected CO2 emissions, and standard deviation of cost using a Monte Carlo 
simulation platform, in which capital cost uncertainty, fuel price, carbon price, and demand uncertainty 
and elasticity have been taken into account [12]. Meanwhile, multiple uncertainties comprising electricity 
demand, capacity factor of variable renewables, and environmental policy have been considered in 
exploring the optimal mix of generation technologies using a two-stage stochastic model [13]. Other study 
considered capacity factor of variable renewables plus hydro to assess output probability distribution and 
generate renewable energy sources scenarios through Monte Carlo simulation combined with a 
deterministic generation expansion planning model to find optimal capacity mix [14]. While these studies 
have shown an in-depth and useful analysis in identifying and modelling uncertainties around electricity 
industry future, however, these studies focused on the probability density approach and frontier optimal 
generation mixes. 
 
Based on this literature review, our study seeks to fill these following three major gaps and limitations – 
as key concerns with much of the work undertaken to date around electricity industry planning with high 
variable renewable penetrations, particularly in the context of developing countries. These three gaps are, 
firstly, none of these studies explicitly and comprehensively explore the tradeoffs, yet also potential 
synergies, of future generation portfolios across the entire energy trilemma objectives of cost, security 
and environmental impacts. This is despite such tradeoffs being a key challenge for policy makers and 
planners, and despite the considerable variation in prioritization that may be seen across jurisdictions. 
Secondly, many of existing studies have used optimization techniques that can be problematic for 
exploring the implications of future uncertainties for energy trilemma objectives, as optimization 
techniques typically seek a single ‘lowest’ cost solution. However, this lowest cost solution will depend on 
the cost and constraint assumption ‘inputs’. A relatively small change in estimated future costs for 
particular generation technologies (PV is a particularly pertinent example here) may entirely change the 
‘least cost’ outcome. And it may be that a very different generation portfolio is only slightly more 
expensive but has extremely desirable characteristics for planners in terms of, for example, local industry 
participation and reduced reliance on fuel imports. Thirdly, none of the existing studies have utilized 
clustering techniques to present a highly complex choices as a result of managing energy trilemma 
objectives in the area of electricity generation expansion planning. Where efforts to map such tradeoffs 
have been undertaken partially in very few studies, there is the challenge of presenting potentially highly 
complex choices in a way that is useful to planners and energy policy makers. 
 
Our study therefore presents a novel approach that allows a comprehensive assessment and exploration 
of energy trilemma key metrics performance of electricity generation planning with high variable 
renewable penetrations using three integrated methods. Firstly, our modelling approach explicitly 
explores energy trilemma tradeoffs between estimated future costs, reliability and environmental impact 
rather than treating one or more of them as constraints. Secondly, we use an optimization tool based on 
evolutionary programming that can, with modest modifications, provide far more information on the 
shape of the solution space by explicitly mapping ‘near optimal’ generation mix solutions. Other 
optimization techniques such as linear programming and dynamic programming do provide some 
guidance on the near solution space – for example, shadow pricing binding constraints, and mapping all 



state transition costs. However, evolutionary programming techniques explicitly solve the costs of a wide 
‘population’ range of possible generation solutions as they evolve better solutions, and solutions that are 
only slightly more expensive than the least cost solution can be analyzed through ‘cost relaxation’ as we 
explain below. Thirdly, we apply a range of techniques including clustering analysis to present this highly 
complex ‘near optimal’ generation mix solution space in more informative ways for electricity planners 
and policy makers. 
 
To demonstrate our proposed approach, we apply it to the particular context of the Indonesian Java-Bali 
interconnected power system. The Indonesian electricity industry presents an interesting and important 
opportunity for analysis. The world’s fourth most populous nation is in a period of rapid economic growth 
that is stressing the existing industry and demands major capacity expansion in the coming decades. While 
Indonesia has plentiful coal, it also has excellent renewable, particularly hydro, geothermal and solar, 
resources. Reliability is a challenge while the environmental impacts of its coal dominated generation 
sector are also an issue, particularly if future developments focus on coal generation expansion. The 
government has developed a power plan that incorporates growing renewables yet a continued reliance 
on coal [15]. Whilst other groups have presented alternative visions for Indonesia’s electricity industry 
future [16], our study is intended to make a further contribution to the deliberations of Indonesian 
electricity industry planners and policy makers in an increasingly uncertain context of planning. 
 
Our study makes three new contributions to the body of knowledge around electricity industry planning, 
particularly to the energy modelling community’s suite of methods and tools for exploring possible 
sustainable electricity industry futures as we: 1) explicitly map the near-optimal solution space of 
generation mixes that perform nearly as well as the ‘optimal’ solution – and which may of course actually 
could be better given future uncertainties; 2) explicitly categorize these high performing generation 
portfolios according to some key metrics for the energy trilemma; and 3) use clustering to better 
understand the key performance tradeoffs across these metrics. In summary, the innovation of our study 
is in the use of cost relaxation to get many reasonably low-cost solutions and then clustering techniques 
to identify key aspects of this range of solutions. We also hope that our study can provide some specific 
insights for Indonesian energy planners and policy makers as well as wider communities contemplating 
their options for a more sustainable energy future.  
 
The rest of this paper is organized as follows. We outline our methods in Section 2 while Section 3 presents 
results obtained from the case study of Indonesia’s Java-Bali grid. Finally, concluding remarks and 
thoughts for possible future work are presented in Section 4. 
 
2. Methods 

 
2.1. The methodological framework 
 
In this study, we develop a framework to assess possible future electricity generation portfolios given the 
multiple objectives of the energy trilemma, and significant uncertainties, particularly related to future 
technology costs. The framework integrates two different methods. To incorporate uncertainty, multiple 
near least cost generation portfolios are collected from a stochastic optimization model. To assess 
performance across multiple objectives, clustering is used to examine the performance of the generation 
portfolios with respect to energy trilemma key metrics. The conceptual framework is presented in Fig. 1, 
while the framework’s components are further elaborated in subsequent sections.  
 



 
Fig. 1. The framework for assessing possible future generation portfolios. 

 
2.2. Simulation overview and dataset 
 
Our method for exploring possible future electricity industries involves first selecting a set of possible 
generation options for consideration. Some of these options are context specific – for example, our 
Indonesian Java-Bali grid case study incorporates coal, geothermal, power constrained hydro, coal-fired 
plant, Combined Cycle Gas Turbine (CCGT), Open Cycle Gas Turbine (OCGT), biomass, solar PV fixed axis 
and onshore wind farm options. The Indonesian coal-fired generation mix is coal-dominated. However, all 
of these generation options, including some small-scale grid-connected solar PV have been deployed in 
Indonesia, and later on followed by a breakthrough project of 75 MW wind farm located in Sidrap, 
Sulawesi island [15], and the latest commissioned of 60 MW wind farm located in the same island, while 
a number of assessments have highlighted some reasonable and promising solar and wind generation 
options, as mentioned in Indonesia’s renewable energy prospect report [5], Indonesian wind map [17], 
and the catalogue for Indonesian power technology dataset [18]. Estimated annualized capital costs, fixed 
O&M, fuel cost, variable O&M, and the carbon emission intensity of each option is specified. Furthermore, 
any variable renewables require location specific generation profiles (typically 30-60 minutes interval over 
at least a year). An estimated demand profile of equivalent time steps and duration is also required. 
 
Evolutionary programming tools generally create a feasible population of possible mixes of generation 
technologies and locations and then simulate their operation over the year or more of dispatch. Reliability 
may be set by putting a high price on any unserved energy, or as a constraint for feasible solutions. 
Similarly, carbon emissions can either be priced ($/tCO2) or set as a constraint for the overall power system 
over the year. Evolutionary mechanisms are used to evolve this population of feasible solutions towards 
a least cost generation mix. Importantly, this evolving mix of generation portfolios can be tracked. 
 



In this study, we use an open-source evolutionary programming-based techno-economic optimization 
model, National Electricity Market Optimiser (NEMO), as the primary simulation tool. Written in Python1, 
the source code can be found in [20]. Like the majority of capacity expansion models, NEMO is designed 
to search for a single least cost generation investment option to satisfy the constraints applied. NEMO has 
been used in this way to model high renewables scenarios for the Australian National Electricity Market 
[19] and Indonesia [21]. However given the uncertainties associated with future costs and opportunities, 
particularly estimates of technology costs, it is important for planners to appreciate the characteristics of 
a set of portfolios that can potentially achieve the planning goals at near least cost, rather than a single 
modelled solution. This study, therefore, uses a novel approach, extending the tool functionality allow 
assessment of a large number of near least-cost generation portfolios with total costs that fall within 5% 
of the least cost solution found by the model. The study also adapts the tool to the generation expansion 
planning context of Indonesia’s Java-Bali 2030 electricity grid.  
 
NEMO contains a chronological dispatch model that is used to test portfolios of conventional and 
renewable electricity generation technologies and uses an evolutionary programming approach, 
Distributed Evolutionary Algorithms in Python (DEAP), to search for a near-least cost solution. DEAP is an 
evolutionary computation framework implemented in Python covering most common evolutionary 
computation techniques such as genetic algorithm, particle swarm optimization, and differential 
evolution [20]. NEMO implements the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), a 
stochastic method for solving continuous domain optimization of non-linear non-convex function 
problems [22]. Fig. 2 shows the generic optimization framework of NEMO, which is unveiled by exploring 
the source code in [20], and the extension conducted in this study to the original framework as we 
enhance the functionality of the tool. It is intended to provide readers with an idea on the foundation of 
our work and our new contribution to the field area. 
 

 
Fig. 2. The generic optimization framework in NEMO [20] and the extension in this study. 

 
The dispatch program in NEMO takes inputs such as the projected hourly demand, hourly solar and wind 
output traces, coal and gas emissions intensity, discount rate, fuel and technology costs data and 
dispatches all generation technology candidates according to the predetermined dispatch order to meet 
the projected demand in each particular hour, applying a number of constraints and limits, including the 
predetermined reliability standard, technology capacity built limit, hydro energy generation limit, and 

 
1 Python is an open-source high-level programming language which is interpreted, interactive, object-oriented. It 
has a large and comprehensive standard library to support the development of a wide range of applications. 
Python is community driven and has an organization called The Python Software Foundation (PSF). 



other policy-based constraints. NEMO searches for the least cost generation portfolios using the CMA 
evolution strategy, for a specified maximum number of iterations. In each generation of the search, 
several populations are established by the algorithm, and total generation cost (operational and capital) 
along with penalty (if any), any unused surplus energy, achieved unserved energy, and total CO2 emissions 
are calculated for each population within each generation. The algorithm then compares the least cost 
solutions obtained in the current generation with the previous, to find the all-time least cost. In this study, 
NEMO is adapted to produce set of near least cost solutions by relaxing the cost constraint such that all 
generation portfolios with total generation cost fall within 5% least cost solution are retained. 
 
Given the low penetration of variable renewables in the Java-Bali grid, our study does not consider grid 
capacity to manage variable renewable energy, the impact of distributed energy or energy storage 
technologies. This is aligned with, and allows the results to be compared with the published planning 
documents for the Java-Bali electricity grid. Nevertheless, technical integration studies would be 
beneficial to understand the characteristics, potential and limitations of the modelled scenarios, while 
exploration of the role of distributed energy and energy storage technologies would certainly add value 
in future studies.  
 
We simulate 2030 generation portfolios for Indonesia’s Java-Bali electricity grid, using 2015 hourly grid 
demand as a baseline. Data for gridded hourly PV and wind power output traces across the Java-Bali region 
are obtained from Renewables Ninja, an online renewable energy simulation tool [24] and Indonesia wind 
prospecting map [17], respectively. We select six locations dispersed within six provinces in the Java-Bali 
region to deploy solar PV and wind by considering the temporal and spatial variability, capacity factor, 
and potential output of both technologies [21]. We apply capacity-build limits for geothermal and hydro 
in 2030 according to [5]. NEMO’s two key parameters for evolutionary optimization, i.e. number of 
generations and initial standard deviation of the distribution, are set at 100 and 2, respectively, as in [19]. 
We prioritize dispatch of variable renewable energy generation with the lowest variable O&M cost, then 
determine the hourly dispatch order of the synchronous generation candidates according to operating 
cost: geothermal, followed by hydro, coal, OCGT, CCGT, and biomass. For technology cost dataset, we use 
2030 mid-level (base case) technology costs which are gathered from official sources [18], [23] as 
presented in Table 1. These are reasonably comparable to other international databases.  
 

TABLE I 
The 2030 Indonesian Java-Bali grid mid-level generation technology cost components 

Technology Capital 
($/kW) 

Fixed O&M 
($/kW-year) 

Variable O&M 
($/MWh) 

Geothermal (G) 3,200 16.7 0.7 
Hydropower (H) 2,000 35.8 3.8 
Coal fired (C) 1,360 35.8 3.8 
OCGT (OC) 400 22.5 3.8 
CCGT (CC) 710 22.5 3.8 
Biomass (B) 1,600 43.8 6.5 
Solar PV fixed axis (PV) 610 12.5 0.4 
Onshore wind (W) 1,310 52 0.8 

 
 
 
 



2.3. Modelling scenarios and assumptions 
 
In this study, we firstly use a fixed USE limit of 0.005% as a reliability constraint, which is arguably a high 
reliability standard for the context of a developing country electricity industry. Secondly, we apply carbon 
prices of $0/tCO2 (CP0), $30/tCO2 (CP35) and $60/tCO2 (CP60) to reflect possible future policy settings to 
achieve Indonesia’s emissions reduction commitments, but also to capture some aspects of uncertainty 
around future coal and other fuel costs, and costs associated with financing these increasingly risky 
projects. It should be noted that there is no specific carbon policy for the Java-Bali grid, however there is 
a government target of 23% renewable energy share on generation mix by 2025 countrywide [25]. We do 
not consider transmission network investment requirements.  
 
Assumptions incorporate in our generation planning model include a non-synchronous penetration of 
0.75, no minimum capacity reserves constraint, a 5% discount rate on annualized technology capital cost 
and a conservative annual demand growth of 5% from 2015 to 2030 [21], which is based on the historical 
average annual growth during a decade before and several years after 2015. As consequences, we obtain 
an energy demand profile of 346.5 TWh and 50 GW peak load for our modelling. Meanwhile, coal and gas 
prices in 2030 are assumed to be $3.5/GJ and $10.9/GJ, respectively [5], [6].  
 
2.4. Clustering analysis and evaluation of clusters 
 
Clustering analysis has been increasingly applied in some areas of electricity industry, such as in studies 
around load profile identification and demand estimation incorporating different datasets, such as load 
time series [26], smart metering data [27], demand profiles [28], occupant activity data [29], in addition 
to other applications covering smart energy system [30] and air-conditioning energy performance [31]. 
However, literature in the topic of clustering application for electricity generation expansion planning, is 
currently lacking. A recent clustering study in the area of capacity expansion planning is related to 
capturing the effect of variable renewables and energy storage [32] and time-period clustering for optimal 
capacity expansion planning with storage [33].  
 
Clustering techniques are applied in this study to map various possible solutions lead to secure-affordable-
low emissions technology mixes. This study primarily applies k-means clustering technique considering to 
its simplicity, efficiency, expandability, and ability to handle big data despite few possible drawbacks 
shown in some cases, such as sensitivity to the initial selection of cluster centers and chance to produce 
local optimum solution as mentioned in the study using smart meter data [27], demand profiles [28], and 
study on residential air conditioner control [34]. The step-by-step working principle of k-means clustering, 
in which the solution space is divided or partitioned into several cells containing data points with similar 
patterns, is summarized in [35]. Neural-network based-Self Organizing Map (SOM) is then used to 
compare the clustering results. The overall SOM algorithm is summarized in [36]. Neural network based-
SOM clustering has been applied, for example, in estimating load for microgrid planning [73] and 
calculating load profile [38]. 
 
We apply the Calinski-Harabasz (CH) [39] and Davies-Bouldin (DB) [40] rules to evaluate the optimal 
number of clusters. In principle, these methods work by applying two important criteria, cluster 
compactness and separation. The first criteria measure the closeness of the member in each cluster to 
reflect cluster compactness while the second criteria measure the distance between clusters to reflect 
separation among clusters. The optimum number of clusters according to CH rule is detailed in [41]. DB 
rule measures the average of similarity between each cluster and its most similar one [42]. To follow the 
evaluation criteria, better number of clusters is represented by the lower-resulted DB index. Although 



there are some other evaluation rules available, the decision regarding number of clusters is eventually 
rather subjective depending upon the objective of analysis and details of the variability that the users 
would expect. 
 
2.5. Adoption of capacity mix parameters into energy trilemma 
 
For each generation portfolio, the simulation of a year of operation provides three representatives ‘energy 
trilemma’ metrics – achieved reliability (% USE), total industry costs - both capital and operating - ($/year) 
and carbon emissions (tCO2). We use CO2 emissions as a representative environmental metric since CO2 
emissions represent the most significant long-term environmental risk. While coal-fired power plants, for 
example, release other greenhouse gasses such as methane and nitrous oxide, many official electricity 
generation planning and statistics, reports and other literature use CO2 emissions as an immediate 
representation of the air pollutants released by electricity generation and its value in quantifying the 
impact to environment. These are not complete representations of the trilemma; industry costs in 
particular do not capture the complexities of equity and affordability [1] while there are environmental 
impacts other than carbon emissions associated with different technology choices.    
 
Although we set a USE constraint of 0.005%, this is an upper constraint and it is of course possible that 
candidate generation portfolios deliver lower USE. The conversion of the numerical values from actual 
achieved USE into a security score (magnitude) is, for simplicity, a linear interpolation from USE 0.000 to 
0.005 equivalent to security scores from 100 to 75. We only consider security scores between 75-100 in 
this modelling exercise given the relatively high constraint. We conduct 2 steps of values conversion 
through normalization and scaling procedure to obtain the score for economic and environmental 
sustainability dimensions as follows: 
 

(i) Sort candidate generation portfolios from the smallest to the largest value. 
(ii) Determine the position (magnitude) of each value in the trilemma by normalizing the sorted 

values as following equation: 
 
   𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑖 = 1 − 𝑂𝑙𝑑 𝑣𝑎𝑙𝑢𝑒𝑖

𝑂𝑙𝑑 𝑣𝑎𝑙𝑢𝑒𝑚𝑎𝑥
                     (1) 

(iii) Determine the scale of the normalized values. The minimum and maximum scale for economic 
and environmental sustainability dimensions are set to 25 and 100, respectively, for visual clarity 
in the presentation of results. This provides the scale range of 75. The scaling operation to obtain 
the new values within a certain range of old values is carried out using the following equation: 

 
𝑁𝑒𝑤 𝑣𝑎𝑙𝑢𝑒𝑖 = [(𝑂𝑙𝑑 𝑣𝑎𝑙𝑢𝑒𝑖−𝑂𝑙𝑑 𝑣𝑎𝑙𝑢𝑒𝑚𝑖𝑛)×𝑁𝑒𝑤 𝑟𝑎𝑛𝑔𝑒

𝑂𝑙𝑑 𝑟𝑎𝑛𝑔𝑒
] + 𝑆𝑐𝑎𝑙𝑒𝑚𝑖𝑛  (2)  

                      𝑂𝑙𝑑 𝑟𝑎𝑛𝑔𝑒 = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑚𝑎𝑥    (3) 

                     𝑁𝑒𝑤 𝑟𝑎𝑛𝑔𝑒 = 𝑆𝑐𝑎𝑙𝑒𝑚𝑎𝑥 − 𝑆𝑐𝑎𝑙𝑒𝑚𝑖𝑛    (4)   

 
There is one further complexity in industry costs – the treatment of carbon costs. The role of carbon 
pricing is to change the relative competitiveness of different generation technologies by changing their 
operating costs according to their emissions intensity. While it is of course possible to then include these 
costs (price times total annual emissions) in total industry costs, these costs do actually represent carbon 
revenue (CR) that can go towards helping pay for other industry costs or reduce taxes elsewhere. We 



therefore distinguish between industry costs in some of our analysis. Analyses in this study are conducted 
according to the following steps: 
 

(i) Relaxing cost minimization: Using NEMO, we determine the set of candidate generation 
portfolios who costs fall within 5% of the least cost solution for a predetermined 0.005% USE 
limit and each carbon price scenario. 

(ii) Mapping candidate generation portfolios.  
(iii) Pre-processing (pre-clustering analysis 1): We analyze the candidate portfolios that have the 

highest and lowest PV capacity altogether with the mixes with the highest and lowest coal 
capacity, the highest and lowest gas capacity and the least cost mix. The three associated 
parameters of the mixes, i.e. cost, USE and CO2 emissions are then mapped and analyzed as well. 
In this regard, we also analyze the realized costs with CR component included and without CR 
component included. 

(iv) Pre-processing (pre-clustering analysis 2): We convert all associated parameters of the mixes 
(cost, reliability, emissions) into 3 dimensions of energy trilemma and map all values of the three 
dimensions of all seven portfolios (the highest and lowest PV, coal, gas and least cost portfolios) 
using radar charts. The charts depict the characteristic of different generation portfolios with 
respect to all dimensions in energy trilemma. 

(v) Clustering analysis 1: We apply the k-means clustering technique into the 5% least cost 
technology mixes with different CPs to obtain group of technology mixes. We consider 6 clusters 
and use the k-means clustering algorithm in MATLAB. We use 1,000 repetitions to obtain a stable 
clustering membership number and configuration for each carbon price scenario. For 
comparison, we also use SOM clustering technique using nctool in MATLAB. As we obtain very 
similar results using SOM, we only present the results obtained from k-means clustering. 
Applying the CH and DB rules (briefly discussed earlier in section 2.4) to evaluate the number of 
clusters to be used, the suggested number of clusters based on these rules are mostly fall 
between 4 to 6 clusters. In this study, we choose 6 clusters to better capture the variability of 
the associated parameters that possibly emerge from the analyses. 

(vi) Clustering analysis 2: For each CP, we analyze the 3 associated parameters of each cluster using 
the boxplot and compare cost and CO2 emissions, as the two key parameters (given the reliability 
level is on the expected range) of all clusters. From this point, 2 distinct clusters can be identified, 
i.e. the cluster with least cost mix and the cluster with less emissions mixes. 

 
3. Results and discussions 
 
3.1.  Base case results – least cost capacity and generation mix 
 
We first solve least cost generation portfolios for the three different carbon price scenarios and the 
0.005% USE limit. We save all feasible generation portfolios during the search whose overall costs ($/year) 
fall within 5% of the eventual least cost solution. Note that NEMO can incorporate existing generation but 
undertakes what is effectively a single investment step – in our case for 2030, rather than a sequence of 
investment steps.  
 
Results for the ‘least’ cost generation portfolio with a 0.005% reliability constraint are shown in Fig. 3 for 
the three carbon price scenarios. Note that there are constraints on maximum hydro and geothermal 
capacity, as proposed in [21]. For CP0, there is substantial PV generation capacity in the least cost mix, 
but coal still predominates, with only a limited role for gas. CP35 sees more than double the PV but little 
other change in capacity. For CP60, PV capacity barely changes but wind generation now enters the mix, 



as does CCGT. Renewables climbs to over 70% of generation. These results might suggest certain choices 
and strategies for policy makers. However, the question arises of how sensitive they are to the specific 
2030 cost assumptions, and what other generation mixes might offer relatively similar industry costs but 
perhaps quite different policy pathways. 
 

      
 

Fig.  3. (left) Least cost capacity mix and (right) least cost generation mix with fixed 0.005% USE limit for 
all CPs. 

 
Results obtained for the case with no carbon price (CP0) are intended to reflect the latest single-scenario 
planning made by PLN [25], in which no carbon price is considered, to provide a basis for comparison and 
as a baseline for policy development. We therefore incorporate similar generation technology candidates 
to the published planning document. The results show that the renewables generation share by 2030 
could achieve more than Indonesia’s 23% renewables target [25], with solar capacity within the technical 
potential for Indonesia [5], [43]. This is in contrast to official planning, which shows only 18% share of 
renewable energy, while our least cost portfolios also show coal capacity less than that in the planning 
document (Fig. 3).  
 
By achieving about 55% renewable energy share in the generation mix, notably including a high solar PV 
penetration as shown in Fig. 3 (right), our least cost mix results in 146 mtCO2, while the CO2 emissions of 
the government’s BAU projection for 2030 (for the Java-Bali region) would be around 397 mtCO2

2. The 
targeted 29% reduction commitment would correspond to approximately 282 mtCO2. Our scenario results 
in approximately 48% less emissions.  
 
This highlights concern regarding Indonesia’s pathways to de-carbonize the electricity industry in the 
future [44], and the role of coal. According to Indonesian government regulation no. 79/2014 on National 
Energy Policy, the coal share in the primary energy supply mix should be minimum 30% in 2025 and 
minimum 25% in 2050 [45]. However, based on the results presented in our study, we see a promising 
opportunity to reduce emissions at low cost.  
 

 
2 This value is an approximate amount of CO2 emissions in Java-Bali electricity grid in 2030. We calculate this value 
based on the energy related emissions of 1,669 mtCO2, which is specified in the Indonesian Nationally Determined 
Contribution to United Nations Framework Convention on Climate Change (UNFCCC). Reducing the energy related 
emissions by about 15%, we get 1,418 mtCO2 to exclude non CO2 greenhouse gas emissions, then reducing this CO2 
related emissions by 60%, and finally by another 30%, we get the approximate CO2 emissions for electricity 
generation sector in Indonesia and in Java-Bali grid, respectively.    



3.2.  Fixed USE limit at 0.005%, cost relaxation up to 5% least cost technology mix 
 
As we obtained a range of different least cost technology mixes presented in Fig. 3 (left), we expand each 
one of these three mixes into a spectrum of near least cost generation portfolios as shown in Fig. 4. This 
spectrum of portfolios, for each carbon price, is obtained by relaxing the overall industry cost up to 5% of 
that of the least cost mix presented in Fig. 3 and collating all generation portfolios that fall within this cost 
range.  
 
The spectrum of near least cost portfolios, for example at CP0, consists of some 600 technology mixes. 
We obtain a wide capacity range across coal OCGT, solar and in some cases wind capacity. While 
geothermal and hydro capacity in 2030 remain at maximum potential for all carbon prices up to 10 GW 
and 8 GW, indicated with a downside arrow, the simulations result in both smaller and greater capacities 
for other technologies, indicated with two-way arrows.  
 

       
Fig. 4. Possible technology mix by relaxing cost up to 5% least cost mix and by fixing USE limit at 0.005% 

for CP0 (left), CP35 (middle) and CP60 (right). 
 
The spectrum of technology mixes highlights the potentially wide range of generation investment futures. 
At CP0, there are evident options for greater or lesser coal, more OCGT and much more or less PV. At 
CP35, the role of gas including now CCGT could be quite substantial and the range of PV capacity increases 
and its range narrows. At CP60, coal capacity falls, CCGT climbs, PV capacity climbs further and wind 
becomes an option (from negligible to over 30 GW) across all candidate generation mixes. It is clear that 
the spectrum provides a richer set of insights for policy makers regarding their options and allows wider 
policy considerations to come into play – for example, concerns about future gas availability, or social 
acceptance of wind generation. However, it is less clear how these choices map to each other given that 
there are numerous candidate generation mixes presented, and choices in one technology capacity will, 
to at least some extent, dictate capacity choices in others. 
 
3.3.  Pre-clustering analysis 
 
To better understand the tradeoffs, Selected candidate generation mixes, characterized according to 
those technologies whose capacity varies the most, are shown in Fig. 5. For CP0, it is interesting to note 
that there is not a very strong tradeoff between coal and PV capacity; indeed, the highest coal capacity 
mix actually has slightly more PV. The reverse also holds across the highest and lowest capacity of PV, 
which do not see great variation in coal capacity. The clearest tradeoff would actually appear to be OCGT 



and PV. For CP60, by comparison, there is an evident tradeoff between coal and CCGT generation, as well 
as with PV generation.    
 

       
Fig. 5. Generation mixes with the highest and lowest possible capacity of PV, coal and gas, as well as the 

least cost mix, for each CP scenario. 
 
These highest and lowest generation mixes for each key technology with 5% of least cost are further 
investigated in terms of emissions and USE in Fig. 6. For CP0, it is notable that the lowest cost mix has the 
highest USE, and higher emissions that all except the L-PV and H-OCGT cases. It appears that for around 
$400m/year it would be possible to reduce emissions by around 20mtCO2/year by deploying more PV. For 
CP35, the H-PV mix has mid-range costs yet the lowest emissions and USE. For CP60, the least cost mix is 
considerably lower cost than the other options and has mid-range emissions (they are of course priced at 
$60/tCO2) but lower reliability than all the other options. Excluding the carbon price revenue from total 
industry costs, on the basis that this money can be used to compensate energy consumers, has interesting 
implications in making the higher emission H-coal mix more attractive. When carbon revenue is excluded 
from industry costs, it is also interesting to note that CP35 makes the least cost mix only around 
$200m/year more expensive, yet reduces emissions by over 25mtCO2/year, which would seem to 
represent relatively low-cost abatement. CP60 costs around $2.4b/year but reduces emissions by around 
75mtCO2/year, considerably higher cost abatement. 
 

     



      
Fig. 6. The mapping of USE, total cost, and CO2 emissions of generation mixes with the highest and 

lowest capacity of PV, coal, and gas, as well as the least cost mix for the three CP scenarios. 
 
These outcomes for the min-max technology mixes can also be characterized using the trilemma 
indicators outlined earlier, and then plotted with radar diagrams as presented in Fig. 7. Note that these 
plots use industry costs excluding carbon price revenue, as this could be argued to involve double counting 
of the environmental impacts. Also, as noted above, the security metric for all these candidate generation 
mixes only varies between 75 and 100 reflecting the very low USE seen in all cases.  
 

   
                                                     

Fig. 7. Radar charts of security (S), economic (EC) and environmental sustainability (ES) dimensions for 
each min-max technology (economic indicator is calculated excluding CP revenues from industry costs). 

These radar diagrams nicely illustrate the tradeoffs involved between choosing particular min-max 
technology mixes. There are no clearly superior candidate generation mixes across all the trilemma 
dimensions. However, there are a number of candidate mixes which would seem to have secure-
affordable-low emissions alternatives – for example, the L-OCGT mix in CP0 and CP35 and the L-cost in 
CP60.   

 
3.4.  Results on clustering analysis 
 
Considering the min-max technology deployment mixes is useful in bracketing the possible variation in 
mixes whose costs fall within 5% of the least-cost mix. However, to better characterize the solution space 
we use k-means clustering to group all solutions into six clusters. Figure 8 (left) shows 6 capacity clusters 
for CP0 case. The y-axis scale limits are made equal for all clusters to enable quick visual comparison of 
clustering patterns. The mean capacity mix for each cluster is shown using a black color line to help identify 
the spread of each of the clustering patterns.  
 



    
Fig. 8. (left) Six capacity clusters (y-axis = GW of capacity for each available generation option along the 

x-axis) and (right) unserved energy, cost and CO2 emissions of all clusters CP0. 
 
As shown in Fig. 8 (left), all clusters are characterized with little variations in coal capacity yet considerably 
more on PV. Higher capacity mixes of PV are clustered together in cluster 5 with a wide range of OCGT. 
This differentiates cluster 5 from cluster 4 despite both clusters having a similar pattern as seen from their 
mean capacity. Capacity clusters are further identified based on their USE, cost and CO2 emissions, and 
the range of these are shown, and can be compared, in Fig. 8 (right). Cluster 2 has the lowest average 
cost. However, cluster 1, which has a similar range of costs to cluster 2, has a lower range of CO2 emissions. 
The range of generation capacities in these two clusters are shown Fig. 9. It is interesting to note that a 
modest increase in costs allows greater PV and OCGT deployment.  

 

    
Fig. 9. (left) Generation technology mixes in the least cost cluster (C-2) and ‘less emissions’ cluster (C-1) 

for 5% least cost capacity mix with CP0. 
 

Using the same analysis approach, clustering results of the technology mixes in CP35 and CP60 along with 
the results around least cost mix cluster and less emissions cluster identification are presented in Fig. 10 
to Fig. 13. 

 



    
Fig. 10. (left) Six capacity clusters (y-axis = GW of capacity for each available generation option along the 

x-axis) and (right) unserved energy, cost and CO2 emissions of all clusters CP35. 
  

    
Fig. 11. (left) Technology mixes in the least cost cluster (C-6) and (right) technology mixes in the ‘lower’ 

emissions cluster (C-5) for 5% least cost portfolios with CP35. 
 

    
Fig. 12. (left) Six capacity clusters (y-axis = GW of capacity for each available generation option along the 

x-axis) and (right) unserved energy, cost and CO2 emissions of all clusters CP60. 
 



    
Fig. 13. (left) Technology mixes in the least cost cluster (C-5) and (right) technology mixes in the ‘lower’ 

emissions cluster (C-1) for 5% least cost portfolios with CP60 and fixed 0.005% USE limit. 
 

While keeping the coal capacity range remain unchanged or with only little, insignificant variations, as 
shown in Fig. 9 (right), 11 (right) and 13 (right), higher PV capacities are deployed in all technology mixes 
in the less emissions cluster for all CPs compared to those shown in the least cost clusters. This increased 
PV deployment and hence reduced emissions comes at what would seem to be fairly low additional costs. 
The spread of the emissions and costs in the clusters also offers potentially valuable insights for policy 
makers in terms of what strategies driving particular technology deployment patterns might involve in 
terms of cost or emission risks. 
 
3.5.  Shared area of possible technology mixes 
 
In Fig. 14 we present a method to compare possible technology mixes for each of the CP scenarios in Fig. 
4. This visualization allows us to see the possible range of capacity deployment of each generation 
technology, and gain insights into the possible capacity trade-offs across both conventional and variable 
renewables.  
 

 
Fig. 13. Overlapping areas of the possible technology mixes of all CPs and its intersections. 

 
It is interesting to note that the range of coal generation capacities in for CP0 and CP35 overlap almost 
entirely, despite more solar PV and wind capacity in CP35. A higher total generation cost in CP35 than in 
CP0 results from more capacity built, although coal fuel costs are reduced. CP60, by comparison, has low 
coal capacity and, a very different pattern of CCGT deployment, which sees almost no OCGT deployed. 
This reflects of course the higher emissions intensity but lower capital costs of OCGT versus CCGT. A higher 
carbon price increases the competitiveness of CCGT, even for low capacity factor operation.  

 
The results indicate that if a relatively high social cost of carbon is considered, policy should be directed 
to deploy large-scale variable renewables penetrations, particularly solar PV. The results also indicate that 



limiting Java-Bali future coal capacity, in this case to less than 40 GW, it a low cost option either with or 
without consideration of the cost of carbon.  

 
4. Concluding remarks and future work 
 
Electricity industry planning for a more sustainable energy future is enormously challenging given the 
potentially conflicting objectives of affordability, security and environmental impacts, and the very high 
levels of future uncertainty regarding their prioritization, as well as in generation technology progress and 
costs. Developing countries face particular challenges in all these regards. While there is a wide and 
growing range of simulation and optimization tools to assist in such planning, they have inevitable 
limitations in terms of incorporating these uncertainties and mapping tradeoffs.  
 
Our study sought to advance existing tools and methods in three key ways – identifying explicit metrics of 
the energy trilemma that could be used to assess different possible future electricity industry generation 
portfolios across all key dimensions, mapping the solution space of ‘high performing’ if not absolutely 
‘least cost’ generation portfolios including through the application of clustering, and exploring ways to 
present the solution space to planners and policy makers.  
 
We applied this to the question of possible future generation investment pathways for the Java-Bali 
interconnected system. Our techniques highlight the very diverse generation portfolios that delivered 
costs close to the ‘least cost’ portfolio. Given the uncertainties involved in these cost estimations, notably 
future technology and fuel costs, it is clear that policy makers and planners have a wide range of possible 
pathways towards a more sustainable electricity industry future. There are important tradeoffs, 
particularly between costs and emissions, in these choices. These techniques, as well as these particular 
findings, would seem to have wider relevance to the electricity industry planning and policymaking 
communities, especially in assisting them unveiling a wide range of possible generation portfolios mixes 
that are suitable to their preference pathways and electricity industries’ context, given the techno-
economic potential of high variable renewable energy penetrations. 
 
On the other hand, the potential deployment of large-scale variable renewable energy technologies, has 
been unfortunately hindered by a range of barriers, including lack of supportive regulations and incentives 
for investment, and poor coordination between national and local government. The coal sector has to 
date received more support compared to large-scale renewables. The barriers of integrating solar and 
wind in Indonesia have been comprehensively presented and discussed in [46].  
 
Given  the range of potential generation portfolio options that could improve system reliability and offer 
a better environmental outcome at low cost, our results highlight the importance for policy makers in 
developing countries of considering a range of options to satisfy the trilemma objectives. This is 
particularly important given the uncertainties around technology costs.  
 
While imposing a carbon tax on the supply side would be expected to increase electricity costs, our results 
show that a faster shift to high penetration renewables could in fact be relatively low cost, and therefore 
improve access and affordability with lower risk around the future costs of emissions and fossil fuels.  
 
As indirect emissions such as those produced during solar cell manufacturing are insignificant compared 
to operational emissions from burning fossil fuels [47], we do not include these in our study. However, a 
more detailed study of environmental impacts for generation expansion planning could incorporate all 
life cycle pollutants. As the techniques presented here could be used to applied to these problems and a 



broader range of electricity industry planning problems where multiple objectives are to be satisfied, 
future work could also seek to address some of the limitations of the existing modelling framework 
including adding transmission costs and a greater role for different storage technologies, also to use more 
nuanced, weighted metrics of the trilemma.  
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