

Distributed Generation: Regulatory & Institutional Barriers

Hugh Outhred
University of New South Wales
Email: h.outhred@unsw.edu.au

Distributed generation in a restructured electricity industry

Distributed generation

• Wholesale & retail designs should be compatible, with spot & derivative markets that model flow constraints

Energy service companies (ESCOs)

- Promote distributed resource (DR) options, such as embedded generation, flexible (price-responsive) demand, increased end-use efficiency
- More used to working with commercial & industrial than residential end-users (eg energy contracting)
- Should assess life-cycle cost-benefits, including availability, quality & external impacts
- Need efficient retail spot & derivative markets for energy & ancillary services including externalities:
 - Without efficient & consistent retail contracts, rebound effects will negate energy efficiency enhancements

Some distributed resource options

- Gas-based embedded generation options:
 - Reciprocating engines, small gas turbines, fuel cells
 - Waste heat recovery (heating, cooling, electricity)
- Renewable energy embedded generation options
 - PV, wind, solar thermal (heat & electricity)
- Intermediate & end-use energy storage
- End-uses options:
 - Flexibility (price or direct load control)
 - Enhanced end-use efficiency & frugality
- Metering, communications & control

Availability & quality of supply

- Quality of supply attributes (QOS):
 - Voltage, frequency, waveform purity
 - Supply availability
- Perfect availability & quality not achievable:
 - Supply availability & quality can vary widely in distribution networks
 - Customer equipment can also affect quality
- Risks to availability & quality of supply threaten the flow of end-use energy services:
 - Directly or indirectly through equipment malfunction
 - Hard to define legal obligations (mainly on distributors) for availability & quality at end-user connection points

Contributions to unavailability of supply for small end-users (USA data, AEMC, 2006)

Contributor	Average unavailability per customer year			
	(minutes)	(%)		
Generation/transmission	0.5	0.5		
132 kV	2.3	2.4		
66kV and 33kV	8.0	8.3		
11kV and 6.6kV	58.8	60.7		
Low voltage	11.5	11.9		
Arranged shutdowns	15.7	16.2		
Total	96.8 minutes	100.0		

NEM DNSP reliability targets

SAIDI = system ave. outage duration in min/yr

SAIFI = system ave. no. of outages per year

CAIDI = SAIDI/ SAIFI = customer ave. outage duration in min/yr

(AEMC, 2006)

Region	DNSP	Feeder	SAIDI	SAIFI	CAIDI
Queensland	Energex	CBD	20	0.33	_
		Urban	162	1.78	
		Short Rural	272	2.84	
	Ergon Energy	Urban	220	2.75	
		Short Rural	610	5.70	
		Long Rural	1,180	9.00	
New South	Integral Energy	Total	374	2.91	128
Wales	Energy Australia	Total	102	1.20	
	Country Energy	Total	403	3.56	113
	Australian Inland	Total	303	1.70	182
South	ETSA	Urban	90	1.10	
Australia		Rural	290	2.65	
		Remote	200	1.20	
Victoria	Citipower	CBD	21.4	0.25	63
		Urban	44.9	0.80	44
	TXU	Urban	116.0	1.78	60
		Short Rural	216.0	2.75	68
	Powercor	Total	212.0	2.28	76
	AGL	Urban	79.0	1.27	58
		Short Rural	127.0	2.25	50
	United Energy	Urban	79.0	1.17	57
		Short Rural	128.0	2.24	48
ACT	ActewAGL	All	91	1.2	74.61

Network connection: NSP gatekeeper (NER Ch5)

Connection requirements for generators in National Electricity Rules

- Reactive power & voltage control capability
- Quality of electricity injected into network
- Protection requirements
- Remote control arrangements
- Excitation system requirements
- Loading rates
- Ride-through to avoid cascading outages:
 - Loss of largest generator; 175ms network fault
- Issues concerning availability obligations

Australian electricity restructuring to date

- Has focussed on wholesale market design, network services & ancillary services
- Has not focussed on retail market design or end-user concerns about quality of supply:
 - This has hindered the development of distributed gen'n
- However a number of policies now favour DG:
 - Distribution regulation & pricing review
 - Roll-out of interval metering in NSW & Victoria
 - Policies on end-use efficiency (NFEE & jurisdictions)
 - Renewable energy targets & gas industry restructuring
 - Evolving climate change policies

Emission reduction targets in Australia (Owen Rpt, 2007)

		•	1 ' / / / / / / / / / / / / / / / / / /
Jurisdiction	Long-term (2050) economy-wide targets	Intermediate economy-wide targets	Renewable or low emission targets
Commonwealth Government	No policy. (To be announced in 2008.)	Annual caps for period up to 2020 for an emission trading scheme to be announced in 2010.	2% extra renewable energy target by 2010 (legislated)
New South Wales	60% reduction on 2000 levels	Return to 2000 levels by 2025	10% renewable energy target by 2010 and 15% by 2020
Victoria	60% reduction on 2000 levels		10% renewable energy target by 2016 (legislated)
Queensland	60% reduction on 2000 levels		18% gas generation by 2020 and 10% low emission target by 2020
South Australia	60% reduction on 1990 levels (legislated)		20% renewable energy target by 2014 (legislated)
Western Australia	60% reduction on 2000 levels		15% renewable energy target by 2020 and 20% by 2025
Tasmania	60% reduction on 2000 levels		
Australian Capital Territory	60% reduction on 2000 levels	Return to 2000 levels by 2025	Implement a renewable energy target in line with NSW.

Present electricity industry structure in SE Australia

Enhanced NEM structure with UNSW active end-user participation ESCOs: the missing players in the restructured electricity industry Derivative trading Generation DR Multi-region Services providers Sector:-Intentions. five-minute Intentions, ESCO's large bids & cash flow offers & energy generators payments payments & FCAS **End-users** markets cash flow contracts 4ccess market & system operator Commercial Commercial (eg NEMMCO) Physical Physical cash flow Generation **End-use** Transmission Distribution Sector:-Energy flow Energy flow sector Energy flow large Sector sector (including DR) generators Kinetic energy AMI: the missing interface in the restructured electricity industry

Distributed generation: regulatory & institutional barri

Managing future uncertainty in the NEM

Cash flow in SE Australia electricity industry

Residential electricity bill cost components (IPART, DNSP Review, 2003)

NSW summer & winter peak demand

(Owen Inquiry Report App 2, 2007)

Weekly peak demand in NSW: 2003, 2006, 2007

(Owen Inquiry Report App 2, 2007)

Weekly peak demands

Load curves for 2006 summer & winter peak days

(Owen Inquiry Report App 2, 2007)

NSW Demand Management Code

(to be replaced & extended to other states by COAG policy)

- DNSPS required to develop DR expertise
- DR options to be developed in-house & externally
- Market to be tested for options when reasonable
- Market to be informed well in advance of constraint
- Network & DR options to use the same database
- Clear & transparent option comparison
- Process assessed by IPART as DNSP regulator:
 - IPART allows full cost recovery for cost-effective options as well as additional incentives for DR activities

Distributor investment considering distributed resources

(NSW Demand Management Code of Practice, 2004)

Inform the market via annual plan

Specify constraints, test the market & evaluate options

DR Offer(s) cheaper:

Negotiate contract(s) with DR providers (revert to network option if negotiation fails)

Network option cheaper:

Proceed with preferred network option

Report outcomes & update plans

Transmission
Network Mid
North Coast
(Transgrid, 2007)

Proposed Herons Creek PS 3x50MW CT-diesel fuel: strong community opposition

Emerging network constraint Beresfield-Taree (2008)

330/132kV Coffs Harbour Dorrigo Armidale Nambucca 330/132kV 965 Tamworth 330/132kV Kempsey Pop⊁Macquarie - Herons Creek Taree Muswellbrook 330/132kV 963 Area of Interest Bayswater / Liddell Stroud Beresfield Alcan EA Tomago 500kV Kurri Tomago 330 Newcastle 330kV Waratah West 132kV Vales Point / Munmorah 66kV

Coffs Harbou

Distributed generation: regulatory & in

Stroud to Port Macquarie load history (Transgrid, 2006)

Taree to Port Macquarie peak load shapes (Transgrid, 2006)

Taree to Port Macquarie load duration curves (Transgrid, 2006)

Load growth & load reduction effectiveness (Transgrid, 2006)

Area	Relevant Network Outage(s)	Forecast Summer Load Growth (MW p.a.)	Forecast Winter Load Growth (MW p.a.)
Coffs Harbour to Stroud Area	(Future) Armidale – Coffs Harbour 330 kV line	21	13
Stroud to Port Macquarie Area	Kempsey – Port Macquarie 132 kV line	14	8
Stroud to Taree Area	Beresfield – Stroud 132 kV line Tomago – Taree 132 kV line	6	3
Taree (66 kV)	Taree 132/66 kV Transformer	4.5	2.5
Kempsey (33 kV)	Kempsey 132/33 kV Transformer	2	1.3

Herons Creek PS: location sound but large compared to load growth

	Location of Load Reduction					
Line Outage	Coffs Harbour	Kempsey	Port Macquarie	Taree	Stroud	
Armidale – Coffs Harbour 330 kV line	0.2	0.6	0.9	1.0	0.4	
Kempsey – Port Macquarie 132 kV line	No Effect	No Effect	1.0	0.5	0.25	
Beresfield – Stroud 132 kV line	Negligible	0.25	0.5	0.75	1.0	

Transgrid near-term augmentation options for Stroud – Port Macquarie

(Transgrid, 2007)

Ontion	Description	Scenario 1		Scenario 2	
Option	Description	PV of Costs (\$M)	Rank	PV of Costs (\$M)	Rank
Option 1	Kempsey – Port Macquarie Line	13.5	1	13.5	1
Option 2	Kempsey – Herons Creek Single Circuit Line	19.3	2	22.9	3
Option 3	Kempsey – Herons Creek Double Circuit Line	23.5	3	22.0	2

- Option 1 presently out for tender, to be commissioned by mid 2010
- Further augmentation likely south of Herons Creek at a later date

Example: Sydney region DM project

- Participants:
 - Transgrid, EnergyAustralia (distributor), NSW Dpt of Industry, Planning & Natural Resources (DIPNR)
- Objectives:
 - Identify & develop cost-effective DR options to defer or avoid network augmentation in inner Sydney region
- Options considered (12/03 to date):
 - Stand-by generation, interruptible load, power factor correction, innovative HVAC, building design (Basix)

transmission network, Sydney region (M Park, 2005)

EnergyAustralia vision for network pricing (Colebourn, 2006)

EnergyAustralia distributor meter & network tariff strategy (H Colebourn, 2005)

- Only half-hour meters installed since July 2004
- Replacement half-hour meters for most of 25,000 40-160 MWH end-users installed by June 2005
- Replacement half-hour meters for 110,000
 15-40MWH end-users by June 2010
- 3-rate TOU network tariff from March 2005
- Seasonal TOU network tariff from July 2005
- Tests of communication systems to support non-predetermined pricing & interruptible loads

Spot & derivative access contract based on EA trial of residential dynamic peak pricing

Possible residential NSP forward contracts

- Forward demand profile to meet basic household needs for normal weather conditions:
 - May include a location-influenced allowance for air-conditioning
 - May be a function of household size
 - May include energy as well as network pricing
- Forward price profile determined by area-specific network LRMC estimate for cost of supply:
 - Considering economically efficient investment
- Forward term to be 3-5 years with annual update
- To be determined by regulator & offered by DNSP:
 - As default derivative aggregator if energy pricing included

Climate change implications

- Aust. already affected by climate change impacts
- Need rapid & deep reductions in emissions:
 - End-use options: frugality, enhanced efficiency, CHP, fuel-switching, renewable energy at point of end-use
 - 2. Currently available low-emission supply-side options:
 - Gas CCGT, large-scale renewable energy generation
 - 3. Convert coal-fired power stations to gas CCGT (as at Tallawarra) with industrial use of waste heat
 - 4. Convert retailers to ESCOs
 - Emission trading too slow better used for fine-tuning once major reductions achieved

Conclusions on valuing DG contribution

- Three important issues in valuing DG:
 - Time-varying value of energy should reflect flow constraints
 - Quality of supply, particularly voltage & frequency
 - Obligation to serve
- DG role can be facilitated by coordinated technical & market mechanisms
 - Non-predetermined prices for energy & ancillary services:
 - Value DG improvements to availability & quality of supply
 - Penalise disturbances to availability & quality of supply
 - Communication & interval metering with QOS measurement
 - ESCOs would assist end-users to respond efficiently

Email: h.outhred@unsw.edu.au
Many of our publications are available at:

www.ceem.unsw.edu.au