

Queensland Power and Gas Conference Workshop on Network Services and Ancillary Services 25 February 2004

Transmission Network Services in the National Electricity Market

Hugh Outhred

School of Electrical Engineering and Telecommunications

The University of New South Wales

Sydney, Australia

Tel: +61 2 9385 4035; Fax: +61 2 9385 5993;

Email: <u>h.outhred@unsw.edu.au</u>

www.sergo.ee.unsw.edu.au

Outline

- Ideal nodal market at each connection point:
 - Ancillary services, spot energy, future risk
 - Network services compete with local resources
 - Requires active demand-side participation
- Impractical near term, uncertain long term:
 Complexity, market power, uncertainty
- Practical approaches depend on context:
 - Regional markets & negotiation frameworks
 - Network service pricing & investment protocols:
 - Designed to allow distributed resources to compete

Ideal: competitive electricity industry modeled by nodal markets

- Based on a market at each node:
 - Local generators & end-users
 - Flows to & from the network
 - Nodal ancillary service, spot & forward markets
 - Nodal spot prices set by simultaneous auction
- Network flows determined to maximise the benefits of trade (network-based arbitrage):
 - To exploit diversity in resource availability
 - Subject to network losses & flow constraints

A definition of network services in an ideal competitive electricity industry

- Arbitrage between nodal markets

 In ancillary services, spot energy & future risk
- Subject to:
 - Availability of network elements
 - Energy losses in network components
 - Maximum ratings of network elements
 - Operating limits imposed for system security:
 - Influenced by the characteristics of generators, loads & network elements as well as the system operating state
 - Matters of judgement rather than objectively set

Solving nodal spot markets that include a network model

- Single node assumption (or strong network):
 - All sellers & buyers at one location
- Two node model:
 - Sellers at one node, buyers at the other:
 - Constrained line but no losses
 - Unconstrained line with line losses
 - Competing options to relieve a network flow constraint
- Three node models:
 - Interaction between lines in a meshed network

Single node spot market

Issues illustrated by one node example (all participants at one location or strong network)

- Buyers & sellers see the same nodal price
- No revenue to network operator:
 No network-based arbitrage
- The marginal buyer or seller may have a 'local monopoly':
 - The ability to set price within a limited band
 - More likely with fewer participants

Two-node spot market with constrained lossless link

Issues illustrated by 2 node example: constrained, lossless link

- Nodal prices are set to constrain flow to link capacity (quantity rationing):
 - p_r>p_s (always true for radial case)
 - link outage causes market collapse
- Link owner has a perverse incentive:
 - to constrain link capacity (but not to zero)
- Sellers & buyers may capture some of ideal link surplus due to 'local monopoly':
 - Local market power greater if link constrained

Two-node spot market with unconstrained lossy link

Issues illustrated by 2 node example: unconstrained, lossy link

- Unconstrained, lossy link between all sellers & all buyers
- Link operator buys at sending end, sells at receiving end, increasing link flow until:
 - cost of next increment of flow = its sale value: i.e. $p_s(\Delta X + \Delta L) = p_r \Delta X$ [$\Delta X = sale, \Delta L = loss$] hence: $p_r = (1 + \Delta L / \Delta X) p_s$
- Thus nodal prices are related by the incremental loss of an unconstrained link

Relieving network flow constraints

- Link flow constraints can be alleviated by:
 - Investment in additional link capacity
 - Investment in distributed resources:
 - Appropriately located generation, storage or load
 - Relaxation of QOS criteria (accept greater risk)
- Investment underwritten by forward markets:
 - Generator: sell CFD or call option at node 'r'
 - Load: buy CFD or CO at node 's'
 - Link: buy CFD/CO at node 's' and sell CFD/CO at node 'r'

Relieving network flow constraints: Situation prior to resolution of constraint

UNSW THE UNIVERSITY OF NEW SOUTH WALES • SYDNEY • AUSTRALIA

Relieving network flow constraints: Option 1 - augment link capacity

Relieving network flow constraints: Option 2 - add distributed resources

Relieving network flow constraints: Selecting the best option

- Traditional approach:
 - NSP augments link, recovers cost from users
- Ideal competitive industry approach:
 - Link and distributed resource options compete:
 - Return on investment not guaranteed by regulator
 - Whichever investment option first achieves a bankable project (eg adequate contract cover) will proceed
 - Spot price difference falls if link capacity augmented: – Unless link capacity can be controlled & bid into the market
- Without liquid AS, spot & forward markets:
 Regulator could facilitate a negotiated outcome

Meshed networks

- A meshed network contains at least one loop:
 - At least two network elements operate in parallel
- Flows in parallel network elements are inversely proportional to element impedances
 - Voltage drops across parallel elements are equal
- Impedance = reactance if no network losses:
 - Element resistances are then all zero
- Flow constraints can propagate through the network

Nodal spot markets: 3-node meshed network No network flow constraints or losses

Nodal spot markets: 3-node meshed network One constrained link

Nodal spot markets: 3-node meshed network Constrained link disconnected

Nodal spot markets: 3-node meshed network Implications

- Meshed network elements are mutually dependent:
 - Unless they can be independently controlled
 - Switching 'weak' elements off may even improve economic outcome (unlike radial network)
- Spot market alone gives perverse incentives:
 - Network earns more when flows are constrained
 - Some generators may benefit from constrained network operation

Limits to the effectiveness of nodal markets

- For a given network, more nodal markets:
 - Mean fewer participants in each nodal market:
 - Local participants & network owners gain market power
 - Ancillary services, spot energy & risk harder to price
 - Require a more accurate network model
 - There is a lower limit to the level of network detail that nodal markets can resolve
- Regional markets provide one option:
 - Place major flow constraints on region boundaries:
 - Models of "notional interconnectors" then required
 - Resolve intra-regional network flow constraints by negotiation under regulatory supervision

NEC treatment of network losses & capital costs

- NEC contains NEM rules & access regime:
 Both address network issues
- National Electricity Market trading rules:
 - Notional regulated interconnectors & associated settlement residue auctions
 - Market Network Service Provider (unreg intercon)
 - Intra-regional network loss factors & constraints
- Network access and pricing:
 - Revenue cap for regulated network service providers
 - Jurisdictional derogations in some states

Transmission network services © H Outhred

NEC treatment of network flow constraints

- NEMMCO documents inter- & intraregional flow constraints:
 - these are inputs to the dispatch process
- Significant transmission constraints appearing 50 hours/y or more:
 - To be placed on market region boundaries:
 - Where practical to reset the boundaries to do so

Inter-regional hedges for regulated interconnectors

- A hedge against differences between regional spot prices for one direction of flow
- Based on interconnector settlement residue:
 - Difference in regional reference prices multiplied by interconnector power flow
 - for each spot market interval
- 3-monthly auctions of settlement residue
 - For each regulated interconnector (directional)
- Incomplete hedge:

- doesn't cover interconnector losses or outages

Inter-regional hedge example #1

Inter-regional hedge example #2

NEC Treatment of Transmission & Distribution Pricing (Chapter 6)

- Principles for network pricing:
 - Promote competition in the provision of services
 - Be transparent & non-discriminatory
 - Seek similar outcomes to a competitive market
- ACCC Regulatory test for T&D augmentation: – Reliability:
 - Minimises the cost of meeting an objective criterion
 - Market benefit:
 - Maximises NPV of market benefit having regard to alternative projects & market scenarios

Transmission network services © H Outhred

Transmission pricing

(existing arrangements; under review)

- Allowed annual revenue (AAR) for network
 - Set by regulator (ACCC), based on:
 - 'Optimal deprival' value of the network assets:
 - How would each asset be replaced today if it disappeared?
 - Considering network & distributed resource options
 - Existing assets and audited five-year expansion plan
 - Allowed rate of return:
 - Depends on the assessed risk of the business
 - Five year reset, (CPI-X) annual adjustment:
 - Pressure to control costs between assessments
 - Incentive to further reduce costs, because profits are retained at least until the next assessment

Transmission pricing within regions (existing arrangements; under review)

- Recovering AAR from network users
 - Based on assessed use of the network
 - Network elements considered individually:
 - Overall network AAR is assigned to individual elements in proportion to their optimised replacement cost
 - Each network element allocated to a category:
 - 1. Serve particular network users (*entry or exit*)
 - 2. Provide a *common service* to all network users
 - 3. Shared by market customers in an identifiable way:
 - these costs to be allocated in an 'equitable' fashion
 - At present using "Cost Reflective Network Pricing"

Transmission network services © H Outhred