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Objectives of the Study

Assessing potential economic implications of large-scale PV investment
and Electric Vehicles (EVs) uptake in the broader context of the Australian

National Electricity Market (NEM)

» In the context of generation investment given high future uncertainty
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Implementing measures to
facilitate the integration of both
PV and EVs in the electricity
industry
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- The Australian NEM

= Australian National Electricity Market (NEM)
covers all Eastern States — 90% of electricity

demand.
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= Generation mix consist largely of coal (~70%),
some Gas, Wind and hydro.

= Accumulated PV installation is around 2.5 GW
and could grow to as high as 35 GW by 2030.

“Assessing the potential role of large-scale PV generation and electric vehicles in future low carbon electricity industries"
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Australia (APVA, 2013)
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h!% PV and Electric Vehicles

= PV is one of the fastest growing

renewable technologies
» Rapid technological progress and
cost reductions.

» Renewable energy and climate
policies — e.g. FiT, Renewable
Energy Targets (RETS)

Plug-in EVs are emerging as
significant elements of future
vehicle fleet :

» Major cost reductions

» Concerns over future petroleum
availability and prices as well as
climate change.

“Assessing the potential role of large-scale PV generation and electric vehicles in future low carbon electricity industries"




Integrating PV and EV into the Electricity Sector
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Potential synergies
between PV and EVs

= Potential to facilitate integration of both PV
and EVs into future electricity industries at
high penetration level

But there are potential challenges

= Different technical and economic
characteristics to conventional generation
technologies and end-user load

= Significant uptake of both PV and EV can
have operating and economic implications
for future electricity industries

This study focuses on economic implications relating with future
generation investment in the context of high future uncertainty.



Uncertainties in generation investment

= Significant uncertainty around future fossil-fuel prices, carbon pricing
policies and electricity demand growth in many electricity industries.

= Uncertainties in fuel & carbon prices have implications for energy security
» Price stability has economic value

= Risk — arise due to many

Caigglnapnr?ce Energy price Energy price possible outcomes as a
uncertainties uncertainty security result of uncertainty.

» The likelihood of loss or
unexpected high costs.

24% Coal : 20% Coal
4% CCGT : 3% CCGT
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0% Hyaro | =mao | RISKS can be quantified by spread of
possible outcomes (e.g. standard deviation)
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= |nvestment in a certain generation option (or portfolios) can result in
exposure to external price risk



Probabilistic Generation Portfolio Modeling

= A modeling tool to assess a large number of future generation
portfolios given a range of uncertainties taking into account PV and EV.

Load duration curve
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: Assign probability Generate random
unc:edrf;itr:fzal;?gg)les — | distributions to the |—p samples
uncertain variables (i = n samples)
MCS Range of possible results
- Calculate total costs
represented by a probability — G
process distribution and emissions

Mean and SD can be used to measure
expected cost and risk profile
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Generation Portfolio Analysis

Expected (mean) cost and cost spread (SD) .

of each portfolio is plotted to compare
tradeoff between costs VS risks.

Optimal generation portfolios fall along
“Efficient Frontier” (Costs can only be
reduced by accepting higher cost risks).
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Modeling Generation Investment Scenarios

= Four new generation options:
Black coal, CCGT, OCGT and
' PV (utility scale).

Prob. dist. of fuel ]
il ® Cost parameters in 2030.

= Uncertain future fuel and carbon
AETA (BREE EV modeling Estimated from . .
(BREE) PV modeling AETA (BREE) prices, demand and new-build
plant capital costs.

Hourly demand,
PV generation,

Generator data
of each

technology EV charging load @ price, demand

= Consider different cases of PV penetrations, EV fleet sizes, EV charging
Infrastructure availability and expected carbon prices.

PV EV fleet ||EV Charging || Expected Determine optimal
penetration size infrastructure| | carbon price generation portfolios for
0% - 25% in 0%, 20%, - Residential ~ $0, $20, $50 each case

5% interval 50% - Universal and $80/tCO,

= Determine overall generation costs, cost risks and CO, emissions for different
possible thermal generation portfolios
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Electric Vehicle Modeling

Battery state of charge (SOC) during a
typical day
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= Model hourly PV outputs in different locations (major
cities & regional areas) based on 1-MW fixed flat plate
» Using actual hourly weather data.
» Scale PV outputs for different penetration levels.

» High-level transmission cost estimates are included
for PV plants in regional areas.

Yearly average of hourly PV
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Incorporating PV and EV

= Using Residual (net) Load Durative Curve technigques

= Scale PV and EV outputs for different penetration levels

= Assume priority dispatch for PV - Treat as negative demand
= Simulate hourly EV charging load is then added to produce net demand
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Residual Load Duration Curve

= RLDC is served by conventional generation technologies in the portfolio.
» Merit order dispatch in each period of the RLDC

Some examples of RLDC for different PV and EV penetratlons

Demand (GW)

Demand (GW)

40 l T T T T 40 T T T T T 40 T T T T T
=209 : : f : : = 20° : =205 : : :
- EVfleet 2% ] agh EVfleet 20/o IS VN U AU B B R R EVﬂeet 20%
30 1 30
25| | & 25 1
20} ‘ w ; 1R ——
10% PV | g - 20“’\’ i w
15 L. . 8 15F :  SRTIITIT RPIRTABIORES thhe, .
Demand with EV - Residential charging _ Demand with EV - Residential charging Demand with EV - Residential charging
54 Demand with EV - Universal charging |~ B 5r Demand with EV - Universal charging | 5r Demand with EV - Universal charging
0 ===-Normal demand (without EV and PV) : 0 —==-Normal demand {without EV and PV) 0 ===-Normal demand (without EV and PV) :
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Percentage of time (%) Percentage of time (%) Percentage of time (%)
40 T T T T T T T T T 40 T T T T T T T T T 40 T T T T T T T T T
: leet = 509 : : : : : EV fleet = 50 5 EVfleet:=50% : :
35 EVﬂeet 50}6_ 35 k- %_ 35 k- o_
30 30 30
5 < 25 %25--- ]
o} 220 2 20t
£ 10% PV S 20% PV ]
15 . 8 15_ b 15_ .............
: : : : : : : : : : 0O : : :
10 B S S PP SR | 10 : - - - - - 10 ............................................................. P . v
Demand with EV - Residential charging : Demand with EV - Residential charging Demand with EV Remdentlal charging
5r Demand with EV - Universal charging |- e 51 Demand with EV - Universal charging 5H Demand with EV - Universal charging
0 ===-Normal demand (without EV and PV) : 0 ===-Normal demand (without EV and PV/) ===-Normal demand (without EV and PV)

o

i 0 1
10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80O 90 100
Percentage of time (%) Percentage of time (%) Percentage of time (%)




—
i Centre for Energy and UNSW

Environmental Markets St bt AL

Modeling uncertainties

= Lognormal dist. is applied to future gas & carbon price and capital cost.
= A normal distribution for electricity demand.

= SDs of each uncertain parameters are estimated based on the spread
between low and high projections.
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Histogram of gas price, carbon price and demand over 10,000 simulations
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Optimal Generation Portfolios

‘Efficient Frontier’ (EF) (without a carbon price) Expected cost (mean) and cost
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Optimal Generation Portfolios
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Implications of PV penetration, charging
Infrastructure and carbon price
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Future PV and EVs Integration

= Economic potential to integrate both PV and EVs at high penetrations
» Value of PV generation in satisfying some of the additional demand for

EV charging
= Potential synergies between PV and EVs in reducing overall system

costs, cost risks and CO, emissions

» Particularly in the context of high carbon pricing

» RE and climate policies with regard to carbon pricing are important
= Provision of non-residential charging infrastructure would provide an

economic benefit
= Active management strategies for EV charging are still required to
achieve maximum value of high PV and EV penetrations

» EV control charging to manage EV charging load pattern
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Thank you,
and
Questions?

peerapat@unsw.edu.au

Many of our publications are available at: www.ceem.unsw.edu.au
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