Impacts of Generation-Cycling Costs on Future Electricity Generation Portfolio Investment

Peerapat Vithayasrichareon and Iain MacGill
Centre for Energy and Environmental Markets and School of Electrical Engineering and Telecommunications, University of New South Wales, Australia
peerapat@unsw.edu.au
Context

- Long-term (LT) generation planning and investment models often ignore short-term (ST) operational aspects.

LT Generation planning and investment decisions
- Long planning horizon (5 years+)
- When, how much, types of generation capacity to build
- Ignore operating constraints & chronological demand variability

Short-term electricity industry operation decisions
- Short timeframe (minutes to hours)
- Amount and which generators to dispatch to meet varying demand
- Subject to inter-temporal generating unit constraints

Capital costs, Fuel costs, Future demand, Govt. policies

Chronological demand is rearranged in order of magnitude

Load Duration Curve (LDC)

ST operational criteria might have implications for future generation portfolios (technical viability, additional costs)
Objectives and methodology

• Assess the impact of ST operating criteria on optimal portfolios obtained from LT portfolio planning model
 ▪ Operational viability – number of starts/stops, ramp rates
 ▪ Economic impacts – changes in overall costs (e.g. from startup costs)
 ▪ Emissions impacts – changes in annual CO₂ emissions

Generation portfolios from long-term Portfolio Planning Model

Minimize unit startup/shutdown

Maximize outputs from low running-cost units

• Dispatch low cost units at part-load to allow other units to remain online
• Startups/shutdowns only occur when online units cannot increase or reduce their outputs any further
• Shutdowns occur if outputs of the lowest cost units would otherwise have to be reduced

Rerun candidate portfolios through a year of sequential 30-minute constrained dispatch
Impacts of ST operational constraints

- A case study of generation portfolios with coal, CCGT, OCGT and wind generation in SE Australia
 - 5% wind penetration and a $30/tCO₂ carbon price

- Operational impacts
 - All portfolios were able to meet maximum 30-minute ramps
 - CCGTs incurs nearly daily starts/stops but still within design limits
 - Baseload coal units rarely shutdown, but still needed to vary outputs
Impacts of ST operational constraints

- **Economic impacts**
 - Increase overall costs obtained under long-term planning model (additional startup and running costs)
 - May change in the optimal portfolios on the Efficient Frontier

- **Emission impacts**
 - Reductions in emissions for a certain generation dispatch strategy

- **When carbon price is high and greater RE penetrations**
 - Changes in merit order between coal and CCGT.
 - Coal units will incur frequent starts/stops, resulting in higher costs.
Conclusions

- ST constraints have moderate impacts on the appropriate generation portfolios obtained under the long-term portfolio planning framework (for modest RE penetrations and carbon prices).
- Dispatch strategies associated with startup/shutdown of generating units can influence cycling operation.
- This study did not consider full unit commitment problems.
- Implications of high renewables and carbon price to be further explored.

Acknowledgements: This work has been supported through funding by the Australian Renewable Agency (ARENA) and the Commonwealth Scientific and Industrial Research Organisation (CSIRO)