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Context

* Long-term (LT) generation planning and investment models
often ignore short-term (ST) operational aspects
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Objectives and methodology
e Assess the impact of ST operating criteria on optimal
portfolios obtained from LT portfolio planning model

= QOperational viability — number of starts/stops, ramp rates
= Economic impacts — changes in overall costs (e.g. from startup costs)

= Emissions impacts — changes in annual CO, emissions

Generation portfolios from long-term
Portfolio Planning Model
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Rerun candidate
portfolios through a
year of sequential
30-minute
constrained dispatch

>

Generation dispatch
Strategies

Minimize unit
startup/shutdown

Maximize outputs from
low running-cost units

* Dispatch low cost units
at part-load to allow
other units to remain
online

* Dispatch the lowest
cost technology as
close to its maximum
capacity

* Startups/shutdowns
only occur when online
units cannot increase or
reduce their outputs any
further

* Shutdowns occur if
outputs of the lowest
cost units would
otherwise have to be
reduced
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Impacts of ST operational constraints

* A case study of generation portfolios with coal, CCGT,
OCGT and wind generation in SE Australia
— 5% wind penetration and a $30/tCO, carbon price
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* Operational impacts
— All portfolios were able to meet maximum 30-minute ramps
— CCGTs incurs nearly daily starts/stops but still within design limits

( — Baseload coal units rarely shutdown, but still needed to vary outputs
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Impacts of ST operational constraints
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* When carbon price is high and greater RE penetrations
— Changes in merit order between coal and CCGT.
— Coal units will incur frequent starts/stops, resulting in higher costs.
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Conclusions

e ST constraints have moderate impacts on the appropriate
generation portfolios obtained under the long-term
portfolio planning framework (for modest RE penetrations
and carbon prices).

» Dispatch strategies associated with startup/shutdown of
generating units can influence cycling operation.

* This study did not consider full unit commitment
problems.

Implications of high renewables and carbon price to be
further explored.

Acknowledgements: This work has been supported through funding by the Australian Renewable
(IEEE Agency (ARENA) and the Commonwealth Scientific and Industrial Research Organisation (CSIRO)
(EPES
e

O 9 IEEE

Power & Energy Society®



