





# What might "astute and effective policy" look like for the Future Grid?

UNSW Project for the CSIRO Future Grid Cluster: Robust energy policy frameworks for investment into future grids

## A/Prof. lain MacGill

Associate Professor, School of Electrical Engineering Joint Director (Engineering), Centre for Energy and Environmental Markets

**UNSW** Australia

Electricity Users and the Future Grid: Dependence, Independence, or Interdependence? *Australia All-Energy Conference* 

Melbourne, 7-8 October 2015

www.ceem.unsw.edu.au





## **Policy frameworks**

*"a system of laws, regulatory measures, courses of action, and funding priorities concerning a given topic promulgated by a governmental entity or its representatives"* 

- Astute and Effective policy
  - of keen penetration or discernment; sagacious; adequate to accomplish a purpose; producing the intended or expected result
  - Careful, thoughtful shaping of decision making to achieve desired shared objectives, without also working unduly against broader objectives
  - Robust: with the ability to perform reasonably well under a wide range of possible futures





## **Driving desired decision making**

- What policy options to drive ...
- What decisions out of the range possible for ...
- Which decision makers
- With what 'private' objectives and constraints
- To what shared ends?
  - Is what is "viable" for an individual consumer the best outcome for the economy as a whole? What about other consumers? And the environment?
  - What are the implications of these and other "disruptive" trends for grid stability, security, reliability, and ultimately, viability?





## Energy users – a changing utility context

- From clients
  - Early tailored industrial or commercial (lighting) applications
- ..to citizens
  - Electricity as an essential public good rural electrification
- ..to consumers
  - The vertically integrated utility of growing size and scope
- ..to customers
  - Electricity industy 'reform', liberalisation, deregulation, restructuring
- ..to perhaps now partners, competitors?





# Relevant policy processes ... in theory



all-energyeverila:aRoliaycQuetcomesmacgill





# In practice

 contested, potentially rapidly changing context, high associated uncertainty, historical arrangements, institutions and incumbents with their own objectives and capabilities and capabilities

 always challenging, generally reactive rather than proactive – hence disruption rather than transformation – occasionally shambolic





# Nothing so new about distributed storage

## JOURNAL

OF THE

#### SOCIETY OF

### Telegraph-Engineers and Electricians.

Founded 1871. Incorporated 1883.

| Vol. XVII. | 1888. | No. 73. 🛪 |
|------------|-------|-----------|
|            |       |           |

The One Hundred and Seventy-seventh Ordinary General Meeting of the Society was held at the Institution of Civil Engineers, 25, Great George Street, Westminster, on Thursday, April 12th, 1888-Mr. EDWARD GRAVES, President, in the Chair.

The minutes of the previous meeting were read and approved.

The names of new candidates were announced and ordered to be suspended.

Donations to the Library were announced as having been received since the last meeting from Messrs. J. B. Baillière et Fils; Messrs. De La Rue & Co.; C. H. W. Biggs, Member; and R. H. Krause, Member; to whom the thanks of the meeting were heartily accorded.

The following paper was then read :---

#### **CENTRAL STATION LIGHTING:** TRANSFORMERS V. ACCUMULATORS.

#### By R. E. CROMPTON, Member.

The present paper is the outcome of the discussion which took place on Messrs. Kapp's and Mackenzie's papers on transformers, recently read before this Society. I was asked to give facts and figures in support of the statement I then made, that I believed the distribution of electricity by transformers offered no special advantages over other methods, particularly over distribution by means of accumulators used as transformers.

VOL. XVII.

25



### COST OF 10,000 LIGHT, OR 600-KILOWATT, PLANT.

| A.TALTERNATING TRANSFORMER                                      | B.TACCUMULATOR TRANSFORMER                                      |  |  |  |
|-----------------------------------------------------------------|-----------------------------------------------------------------|--|--|--|
| DISTRIBUTION.                                                   | DISTRIBUTION.                                                   |  |  |  |
| Generating Station, Buildings, £<br>Chimney Shaft, Water Tanks, | Generating Station, Buildings, £<br>Chimney Stack, Water Tanks, |  |  |  |
| and General Fittings 11,000                                     | and General Fittings 8,000                                      |  |  |  |
| Dynamos and Exciters - 865                                      | Dynamos — 600 Kilowatts, in                                     |  |  |  |
| Kilowatts, including spare                                      | 6 sets of 100 Kilowatts each 4,800                              |  |  |  |
| sets, divided as convenient 5,540                               | Motive Power, <i>i.e.</i> , Engines,                            |  |  |  |
| Motive Power, i.e., Engines,                                    | Boilers, Steam and Feed Con-                                    |  |  |  |
| Boilers, Steam and Feed Con-                                    | nections, &c., at £8 12s. per                                   |  |  |  |
| nections, Belts, &c., at £8 12s.                                | I.H.P 8,600                                                     |  |  |  |
| per I.H.P 12,470                                                | 4 Groups of Accumulators, in                                    |  |  |  |
| 500 Transformers, <i>i.e.</i> , one to                          | all 240 cells, in series, at £40                                |  |  |  |
| every pair of houses, at £15                                    | per cell, including Stands 9,600                                |  |  |  |
| each 7,500                                                      | 2,000 yards Charging Main, at                                   |  |  |  |
| 2,000 yards Primary or Charg-                                   | £306 17s. 6d. per 100 yards                                     |  |  |  |
| ing Main, exterior to area of                                   | (see Table 2) 6,137                                             |  |  |  |
| supply, at £308 per 100 yards 6,160                             | 20,000 yards Distributing Main,                                 |  |  |  |
| 20,000 yards Distributing Main,                                 | 161.25 m/m. sectional area, at                                  |  |  |  |
| 50 m/m. sectional area, at                                      | £100 12s. 6d. (see Table 2) 20,125                              |  |  |  |
| £91 7s. (see Table 1) 14,270                                    | Regulating Gear 2,500                                           |  |  |  |
| Regulating Gear 500                                             |                                                                 |  |  |  |
| £57 440                                                         | £50 789                                                         |  |  |  |
| ~01,110                                                         |                                                                 |  |  |  |



# Nothing new about the 'death spiral'?

Centre for Energy and Environmental Markets

Argued that rising prices encourage end-users to reduce consumption or even leave, meaning fixed costs have to be recovered from less and less consumption and/or customers *Savings from demand reduction depend critically on energy/network tariffs* 

End-user departure depends critically on DG technology progress, particularly storage

More of an issue for electricity or gas?

(via google news archive)

Thursday, August 4, 1983 — THE NEWS — Page 7A

## Utilities grapple new enemy: a rate increase 'death spiral'

#### By Jack Danforth

**Orlando** Sentinel

TACOMA, Wash. — There is a new burz word surfacing in Pacific Northwest electric utilities these days. It is the "death spiral." The concept is simple, and consumers of electric power from Florida to Alaska have recognized it for years.

A death spiral occurs during periods of rising electric rates. The theory is that as electricity demand increases, electric utilities are forced to build expensive new power plants.

This causes electric rates to rise and consumers to use less power. Electric utilities have large fixed costs, so as demand — thus revenue — is reduced, rates must be increased again, causing further reductions in consumption, and the cycle is repeated: a death spiral.

The recent collapse of the Washington Public Power Supply System, also known as Whoops, has focused attention on the death spiral. In this region, electric rates for some utilities have tripled during the past three years.

The increases and the Whoops collapse have forced utilities, for the first time in the industry's history, to come to grips with the possibility that they have reached the limits of their customers' pocketbooks.

It long has been known that there is a finite amount of money available in the family budget for the electric bill. Consumers have different limits, but when taken as a whole there clearly is an economic wall that electric utilities cannot go past.

For the past 30 years, energy prices have been so low and relative incomes so high that the "wall" was far alternative sources: gas-fired fuel cells, photovoltaic cells and a more efficient end-use of conventional resources, all of which are distinct possibilities within the next decade.

The old days of building more power plants regardless of the cost are gone. Utilities that continue that philosophy ultimately will be priced out of the market.

Conservation still is a vital cog in our energy policy of the 1980s. It is a dangerous oversimplification to say that conservation at a time of surplus energy only further reduces utility revenues, thus causing higher rates.

Programs as simple as the rebate program in Kissimmee, Fla., are one of the most cost-effective methods of stimulating energy efficiency in the country.

The rebate program concept originated there in 1961 and now is being used successfully by such major utilities as Pacific Gas & Electric in California. In these programs, utilities help customers pay the cost of conservation improvements, which is cheaper than building another expensive plant.

But consumers must understand that it is not a contradiction to promote more use of electricity, more industry and conservation at the same time. In many areas, thousands of kilowatts of electricity are available during off-peak times without building another plant. That results in a lower average cost of energy production.

There are times, of course, in a growing economy, when a new generating plant must be built. But that should not be done until the u lity has explored all the cheaper alternatives — convervation and helping industries generate their own power from wasted





## Relevant future grid 'policy' domains

Comprehensive and coherent policy development process required across all domains

| 1. Regulation                                  | 2. Market Design                                             | 3. External Policy<br>Drivers                                        |
|------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|
| <ul> <li>Transmission</li></ul>                | <ul> <li>Fundamental market</li></ul>                        | <ul> <li>Carbon policies</li> <li>Renewable &amp; energy</li></ul>   |
| network planning <li>Distribution network</li> | design <li>Spot market rules</li> <li>Ancillary service</li> | efficiency policies <li>Fuel policies</li> <li>Broader relevant</li> |
| planning <li>Grid codes</li>                   | market rules                                                 | policies                                                             |

Robustness and Resilience: ability to perform reasonably well under a wide range of possible futures

(from Riesz, 2014)





## Australian NEM – regulatory, commercial regimes







# Network regulation and distributed energy

- Monopoly economic regulation with revenue cap based on approved expenditure and approved tariffs
- Considerable discussion but limited progress to date on DE innovation on expenditure side – including delayed DMIA
- Move to so-called cost reflective network tariffs.... but
  - Which costs past, present or future (future should be key)
  - Are such tariffs even feasible? complexities and uncertainties in their calculation, political realities of implementation
  - Require judgement which may involve, eg. PV specific tariffs and charges, demand charges with fixed minimum demand or measured at any time of day and night....
  - Risks of discriminating against Distributed Energy while allowing far greater existing cross subsidies b/n customers to remain Is this an appropriate incentive structure for an electricity industry in desperate need of clean energy transition?

## SA network wants solar homes to pay \$100/year more for grid

By Giles Parkinson on 27 May 2015

SA Power Networks, the monopoly network operator in South Australia, has caused a furore in the solar industry by proposing a \$100 a year network surcharge on solar households.

The proposal was revealed in a submission to the Australian Energy Regulator earlier this week, and follows decisions by both the Queensland and West Australian governments – the owners of their respective networks – to back away from similar moves.



Would seem to be greater efforts to address solar PV cross subsidies than likely much larger subsidies for ducted air-conditioning and rural customers... despite environmental benefits of PV, adverse network expenditure aspects of rural supply and high peak demand









# Leaving the grid

- The grid is a very valuable asset not because we've spent a lot of money on it (sunk investment), but because of the valuable service it provides.
- With regard to possible grid defection, storage deployment etc, all market forecasts are wrong... although some useful
- Do not under-estimate the costs and challenges of offgrid supply – average demand and PV generation is irrelevant to understanding reliability of supply
- However, distributed storage and generation providing an increasingly attractive option and alternative – will discipline network pricing





## A risk with renewables and energy storage

- A potentially influential political alliance between those who support energy storage and the role it can play in better integrating renewable energy and saving network \$ ....
- and those who would like to see renewables saddled with expensive energy storage obligations, and/or wish to argue for 'light handed' network regulation on basis competition will discipline network service provider behaviour

## **Bootleggers and Baptists**

From Wikipedia, the free encyclopedia

Bootleggers and Baptists is a catch-phrase invented by regulatory economist Bruce Yandle<sup>[1]</sup> for the observation that regulations are supported by both groups that want the ostensible purpose of the regulation and groups that profit from undermining that purpose.<sup>[2]</sup>

For much of the 20th century, Baptists and other evangelical Christians were prominent in political activism for Sunday closing laws restricting the sale of alcohol. Bootleggers sold alcohol illegally, and got more business if legal sales were restricted.<sup>[1]</sup> "Such a coalition makes it easier for politicians to favor both groups. ... [T]he Baptists lower the costs of favor-seeking for the bootleggers, because politicians can pose as being motivated purely by the public interest even while they promote the interests of well-funded businesses. ... [Baptists] take the moral high ground, while the bootleggers persuade the politicians quietly, behind closed doors."<sup>[3]</sup>



Californian police agents dump illegal alcohol in 1925, Prohibition-era photo courtesy Orange County Archives.

## Contents

1 Economic theory
 2 Global warming





## Australian NEM – commercial regimes







# The question is not whether to have a price on carbon?

Costs associated with reducing emissions regardless of particular means chosen (tax, emissions trading regulation, ERF...)

## And / or

 Social costs associated with impacts of failing to effectively manage climate change (SCC)



- Instead, real question is who, pays how much, to whom, for what, when?
- Markets with unpriced externalities inefficient by definition





# Growing + welcome focus on consumers in NEM

"...development of market frameworks to encourage innovative products & services that give consumers more choice in managing bills & support greater competition" "Regulation should generally encourage competition & consumer choice, not stifle it" (Energy White Paper, 2015)

- Incumbents will generally prefer less competition
  - engaged customers with real options key to true competition
- However
  - Limits to the interest, motivation, knowledge and capabilities of some consumers; requires protection and facilitation to support engagement
  - Consumers not always being offered meaningful choices; they want services, not an energy commodity
  - Inadequate measures of competition; does 'churn' and market offer 'spreads' reflect competition or the absence of it? 1.4 million households have engaged through residential PV that reflects real competition beyond choosing a retailer
  - Shared choices important too; including question of renewable energy policy, further electricity industry privatisation





## More competition?





# AEMC perspective

Retail, networks and gas clearly identified as key unfinished business of electricity Industry restructuring

...but still questions regarding institutional capabilities, interest in driving major transformation

## Market Reviews & Advice

In our reviews we take a long term view of what needs to be done to assure consumers of reliable, efficiently priced electricity and gas services.

| STATUS | All                      | Open                   | Completed             | RE                      | EVIEWED BY          | AII | AEMC            | Reliability Pa  | nel                 |                        |           |
|--------|--------------------------|------------------------|-----------------------|-------------------------|---------------------|-----|-----------------|-----------------|---------------------|------------------------|-----------|
| SUM    | MARY                     | 88 M                   | arket reviews         | 4 Accepting st          | ubmissions          | ,   | 0 Recently up   | dated           | 0 Accepting public  | hearing registrat      | ions      |
|        | Title •                  |                        |                       |                         | Date<br>Initiated + |     | Stage +         |                 | Date<br>Completed • | Submissions<br>Close + | Reference |
|        | Review of                | the Victori            | ian Declared Who      | esale Gas Market        | 04-03-15            | I   | Initiation      |                 |                     |                        | GPR0002   |
|        | East Coas<br>Framewor    | t Wholesa<br>ks Review | ile Gas Market and    | I Pipeline              | 20-02-15            | (   | Consultation of | on Draft Report | t                   | 29-05-15               | GPR0003   |
|        | Implemen                 | tation advi            | ce on the Shared      | Market Protocol         | 18-12-14            | 1   | Preparation of  | Draft Report    |                     | 12-02-15               | EMO0029   |
|        | Template<br>2015         | for Genera             | tor Compliance P      | ograms Review           | 13-11-14            | 1   | Publication of  | Draft Report    |                     | 07-05-15               | REL0054   |
|        | 2015 Retz                | il Competi             | ition Review          |                         | 31-10-14            | 1   | Preparation of  | Draft Report    |                     | 19-02-15               | RPR0003   |
|        | Last Reso                | rt Planning            | g Power - 2014 Re     | view                    | 01-07-14            | 1   | Review compl    | eted            | 06-11-14            |                        | EPR0042   |
|        | 2014 Res                 | dential Ele            | ectricity Price Tren  | ds                      | 10-03-14            | 1   | Review compl    | eted            | 11-12-14            |                        | EPR0040   |
|        | Optional F               | irm Acces              | s, Design and Tes     | ting                    | 06-03-14            | (   | Consultation o  | on Draft Report | t                   | 30-04-15               | EPR0039   |
|        | Distributio              | n Reliabilit           | ty Measures           |                         | 30-01-14            | ł   | Review compl    | eted            | 18-09-14            |                        | EPR0041   |
|        | 2014 Reta                | il Competi             | ition Review          |                         | 17-01-14            | 1   | Review compl    | eted            | 22-08-14            |                        | RPR0002   |
|        | Advice on<br>settings w  | linking the<br>ith VCR | e reliability standar | d and reliability       | 29-10-13            | 1   | Review compl    | eted            | 20-12-13            |                        | EMO0026   |
|        | Annual Ma                | arket Perfo            | mance Review 2        | 013                     | 02-09-13            | 1   | Review compl    | eted            | 07-05-14            |                        | REL0052   |
|        | Review of                | Electricity            | Customer Switchi      | 19                      | 07-08-13            | 1   | Review compl    | eted            | 10-04-14            |                        | EPR0038   |
|        | Framewor<br>standards    | k for open             | access and comm       | nunication              | 25-07-13            | 1   | Review compl    | eted            | 10-04-14            |                        | EMO0028   |
|        | Last Reso                | rt Planning            | Power - 2013 Re       | view                    | 15-05-13            | 1   | Review compl    | eted            | 05-12-13            |                        | EPR0037   |
|        | Gas mark                 | et scoping             | study                 |                         | 09-05-13            | ł   | Review compl    | eted            | 27-09-13            |                        | GPR0001   |
|        | Reliability              | Standard               | and Settings Revie    | ew 2014                 | 09-05-13            | 1   | Publication of  | Final Report    | 16-07-14            |                        | REL0051   |
|        | Advice on<br>Methodok    | Best Prac              | tice Retail Price R   | egulation               | 09-05-13            | 1   | Review compl    | eted            | 27-09-13            |                        | EMO0027   |
|        | Managem<br>Residues      | ent of Neg             | ative Inter-regiona   | I Settlements           | 18-04-13            | 1   | Review compl    | eted            | 20-02-14            |                        | EPR0032   |
|        | Difference<br>network re | s between              | actual and foreca     | st demand in            | 14-02-13            | 1   | Review compl    | eted            | 26-04-13            |                        | EPR0035   |
|        | Review of                | the nation             | al framework for d    | istribution reliability | 08-02-13            | ł   | Review compl    | eted            | 27-09-13            |                        | EPR0033   |
|        | Review of<br>reliability | the nation             | al framework for b    | ansmission              | 08-02-13            | 1   | Review compl    | eted            | 01-11-13            |                        | EPR0028   |
|        | 2013 Res                 | dential Ele            | ectricity Price Tren  | ds                      | 19-12-12            | I   | Review compl    | eted            | 13-12-13            |                        | EPR0036   |
|        | Review of                | Competiti              | on in the Retail Ek   | ectricity and           | 13-12-12            | 1   | Review compl    | eted            | 31-10-13            |                        | RPR0001   |





## Present and possible future policies

- Emissions trading good in theory, questionable in practice
  - "Emissions trading schemes are a valid mechanism", although they "have to date worked better in theory than in practice." (Turnbull, 10/2015)
- Emission Reduction Fund poor in theory and practice
  - Low transparency, blind tender on 'imputed' emission reductions from what would *likely* have happened otherwise
  - "environment minister Greg Hunt has been achieving "significant reductions' with his emissions reduction fund" (Turnbull, 10/2015)

## RET and EE – poor in (simplistic) theory, good in practice

- EE and RET our most successful genuine abatement mechanisms to date, whilst also providing additional env. and social benefits
- A need and opportunity to expand efforts with both.
  - Although RET has issues requiring attention post 2020 if Australia is to adopt higher renewable energy targets including market power of incumbent retailers, sunsets on existing renewable projects



## A NATIONAL STRATEGY TO DELIVER PROSPERITY, SECURITY AND SUSTAINABILITY

To achieve energy prosperity, security and sustainability, the government has put

# Energy White Paper process

"Many of us who keenly observe the energy sector can take a pretty good guess at what our next big challenges are" Senator MacFarlane, 10/9/2014



- History suggests not, certainly over medium to longer term: 2004 Energy White paper had almost no discussion of:
  - CSG (CSM)
  - East Coast LNG export
  - Falling demand
  - Falling costs and growing of Wind, PV

- for the benefit of all Australians
- → deliver a prosperous economy while protect role in global efforts to reduce greenhouse
- → encourage development of cleaner, more € Australia's energy future
- → develop effective and efficient energy mark energy, where and when it is needed into th
- → minimise disruptions to energy supplies ar disruptions occur
- → establish an efficient energy tax base, rest resource rent taxes to offshore projects
- → ensure Australia uses its energy wisely.

Figure 3: Demand/Supply balance for electricity—Medium electricity demand scenario

SECURING AUSTRALIA'S

**ENERGY FUTURE** 

IQ



## 29

Possible improvements to White Paper process setting broader policy settings

- As it stands, largely a 'to do' list of government priorities over near future
- In terms of vision and long term planning falls well short
- Opportunities to focus more on planning rather than the plan
  - Detach from political cycle (currently one White paper per government)
  - Broader, and ongoing stakeholder engagement
  - More scenarios and robustness testing of these
  - Leverage ICT to support an ongoing dialogue as new inputs emerge (eg. NESA), circumstances change, policies are implemented...

In preparing for battle I have always found that plans are useless, but planning is indispensable.

OuoteHD.com









## **NEM Governance Review – draft report**

- Highlights challenges yet seems to suggest only modest changes to current arrangements
- No assessment of governance performance to date
- Little to say on how to manage role of incumbents in governance
- Energy Council role remains unclear, yet has key tasks
- Climate Governance likely our greatest challenge but not receiving consideration



## REVIEW OF GOVERNANCE ARRANGEMENTS FOR AUSTRALIAN ENERGY MARKETS

### Submission

by Neil Raffan, Associate Professor Iain MacGill\* and Dr Anna Bruce

Centre for Energy and Environmental Markets

University of NSW

2015





## Where next?

"The best way to predict your future is to create it!" Abraham Lincoln



Certainly opportunities to improve likely outcomes through more thoughtful and effective policy efforts





# Thank you... and questions

*Many of our publications are available at:* <u>www.ceem.unsw.edu.au</u>