DISTRIBUTIONAL EFFECTS OF THE AUSTRALIAN RENEWABLE ENERGY TARGET (RET) THROUGH WHOLESALE AND RETAIL ELECTRICITY PRICE IMPACTS

Johanna Cludius (j.cludius@unsw.edu.au), Sam Forrest, Iain MacGill
School of Economics and Centre for Energy and Environmental Markets, UNSW
School of Electrical Engineering and Telecommunications and Centre for Energy and Environmental Markets, UNSW

The Australian Renewable Energy Target

- Goal: 20% of electricity demand met by RES by 2020
- Review of RET currently underway → Future uncertain
- Separate large-scale (LRET) and small-scale (SRES) schemes
 ⇒ This research: Focus on LRET
- Liable parties (mainly retailers) must purchase certificates on the market

Acknowledgements:
- Commonwealth Environment Research Facilities (CERF), Australian Research Council (ARC), Discovery Grant and the Australian Renewable Energy Agency (ARENA).

Indicative LRET Costs

- LRET costs for a retailer ($/MWh) = Renewable Power Percentage x Certificate price ($/MWh)
- Indicative LRET costs: Weighted average of LRET allowance in regulated retail tariffs
 ⇒ 3.38 $/MWh for 2011-12
 ⇒ 5.29 $/MWh for 2012-13
- Industry exemptions (equ. to ~15% of demand)
 ⇒ 90% highly emissions intensive (esp. Aluminium)
 ⇒ 60% moderately emissions intensive

Indicative Net Effects ($/MWh)

The Merit Order Effect of Wind

- Time-series estimation of merit order effect of wind generation in the Australian National Electricity Market (NEM)
 \[\ln(\text{price}(t)) = \ldots + \beta_2 \text{wind} + \beta_3 \text{demand} + \sum \text{other factors} + \varepsilon \]
 ⇒ Volume-weighted average price (truncated to reflect 'normal operating conditions')
 ⇒ Dependent on total demand (assumption: inelastic in the short-run), wind feed-in, seasonal and weekend dummies
 ⇒ Tobit model employed

2011-12

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>S.E.</th>
<th>t-stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price (t-1)</td>
<td>0.578338</td>
<td>0.006109</td>
</tr>
<tr>
<td>Wind</td>
<td>-0.000060</td>
<td>0.000005</td>
</tr>
<tr>
<td>Demand</td>
<td>0.000030</td>
<td>0.000001</td>
</tr>
<tr>
<td>Constant</td>
<td>0.791780</td>
<td>0.033021</td>
</tr>
</tbody>
</table>

2012-13

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>S.E.</th>
<th>t-stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price (t-1)</td>
<td>0.577430</td>
<td>0.007144</td>
</tr>
<tr>
<td>Wind</td>
<td>-0.000309</td>
<td>0.000005</td>
</tr>
<tr>
<td>Demand</td>
<td>0.000032</td>
<td>0.000001</td>
</tr>
<tr>
<td>Constant</td>
<td>1.062013</td>
<td>0.039886</td>
</tr>
</tbody>
</table>

Add. Controls: Dummies for seasonal trends and weekends

Total MO Effect -2.30 $/MWh

The Role of Regulators

- Pass-through of merit order effect into regulated retail prices depends on methodology of estimating wholesale costs
 ⇒ Standalone Long-run Marginal Cost (LRMC) approach fails to adequately consider impact of renewables on wholesale price
 ⇒ Move to market-based methods in a number of jurisdictions

Political Implications

- Benefits and costs of RET could be distributed more equally
 ⇒ Merit order effect likely overcompensates emissions intensive industry for contribution to cost of RET
 ⇒ Costs to households could be reduced if exempt industry contributed to a larger extent and ...
 ⇒ ... if methods for calculating wholesale costs in regulated retail tariffs reflected merit order effects

Limitations

- Long-term effects
 ⇒ Retirement of generation as a result of expansion of wind
 ⇒ Investment in generation / network capacity
 ⇒ Environmental and energy security benefits