

100% Renewables for Australia?

Challenges and Opportunities

Dr Jenny Riesz

Solar Supercharge, QUT, 14th February 2016

Who am I?

Australian Energy Market Commission

Renewable technologies Variable & non-synchronous

Proportion of variable renewables

A new power system paradigm

Wind displaces baseload generation

J. Riesz, J. Gilmore, (2014) "Does wind need "back-up" capacity – Modelling the system integration costs of "back-up" capacity for variable generation". International Energy Workshop (Beijing)

Engineering challenges

Frequency control - seconds (inertia)

 Displacement of synchronous generation

Frequency control - minutes (regulation)

 Increasing variability and uncertainty → increase in regulation reserves

Frequency control - hours (ramping)

Managing long wind & PV ramps

Fault level in-feed

- Non-synchronous technologies don't provide sufficient fault feed-in
- Protection systems may no longer be able to determine when and where a fault has occurred

Grid code performance standards

 New reactive power and voltage support capabilities required during disturbances

Reliability and Resource Adequacy

 Need to assess differently to present

Assessment by Australian Energy Market Operator (AEMO)

- Responsible for operating the grid
- Study on 100% renewables in 2013:
 - Reliability standard maintained
 - Operational issues "appear manageable" (high level review, based upon international research)

"High penetrations of semi-scheduled and non-synchronous generation would constitute a system that may be at or beyond the limits of known capability and experience anywhere in the world to date..."

but...

"There are **no fundamental technical limitations** to operating the given 100 per cent renewable NEM power system generation portfolios that have been identified."

	Cost for 100% renewables (AEMO)
Total capital cost including transmission	\$219 - 332 billion
Wholesale cost including opex	\$111 - 133 /MWh

20% increase in total bill

Costs are going up anyway...

Summary

- 100% renewables is technically feasible
- Some technical challenges remain
 - But high confidence they will be solved as we progress
- Costs are similar to those we'll probably be paying anyway
 - 20% increase in electricity bills from present?
 - And bills are likely to go up regardless

Thank you

jenny.riesz.com.au

ceem.unsw.edu.au