Modelling Electricity Generation Investment and Carbon Price

China – Australia Carbon Market Design Expert Workshop
Shanghai, China, 11 September 2013

Dr Peerapat Vithayasrichareon
Research Fellow, Centre for Energy and Environmental Markets, School of EE&T, University of New South Wales, Sydney, Australia
Outline

- Role of the electricity industry
- Challenges in the electricity industry
- Generation investment decision making
- Uncertainties and their implications
- Existing generation investment frameworks
- Probabilistic generation portfolio modelling tool
- Some examples
Role of the electricity industry

- The electricity industry plays a vital role in socio-economic development
 - **Social** – Affordable electricity access is key to poverty eradication and improved quality of life (WEC, 2007)
 - **Economic** – energy availability is key driver in the economic growth.

- Environmentally?
 - the World’s present energy systems are primary drivers of environmental challenges – Climate Change.
Challenges in the electricity industry

- Increasing challenges for electricity industries around the world
 - Rapid and highly uncertain demand growth
 - Energy security concerns – Aging infrastructure, high dependence on fossil-fuels.
 - Environmental sustainability – the electricity sector is the largest single contributor to global GHG emissions (IEA, 2012).

![World CO₂ emissions by sector in 2010](source: IEA (2012))
Challenges in the electricity industry

- $17 trillion of global investment is required over the next 20 years to expand infrastructure and meet demand growth (IEA 2012)
 - 60% in generation capacity, 40% in network.

Global installed generation capacity to increase by 4,000GW

Global installed generation capacity and additions by technology type (IEA, 2011)
Generation investment decision-making

- One of the most critical and challenging decisions
 - Complex nature of generation investment: *Capital intensive, long-lived assets, significant lead times, irreversible.*
 - *Must commit large investments ahead of time.*

- Particularly challenging for countries with *rapid social & economic development* – *leads to high electricity demand growth*
 - *Require investments in supply infrastructure over short timeframes.*

- Different generation investment options with different characteristics (economic, operating, emissions)

<table>
<thead>
<tr>
<th>Technology</th>
<th>Capital cost</th>
<th>Operating cost</th>
<th>Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal-fired</td>
<td>High</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>CCGT</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td>OCGT</td>
<td>Low</td>
<td>High</td>
<td>Moderate</td>
</tr>
<tr>
<td>Nuclear</td>
<td>Very high</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Renewables</td>
<td>High</td>
<td>Very low</td>
<td>None</td>
</tr>
</tbody>
</table>
Generation investment decision-making

- **Multiple objectives** (and criteria) nature.

 - Tradeoffs (Synergies)

 Overall industry costs

 - Coal? gas-fired?

 Energy security
 - Physical supply
 - Price stability

 Objectives

 Environmental emissions
 - CO₂
 - NOₓ
 - SOₓ

 - Tradeoffs (Synergies)

Potential conflicts between these objectives in many countries

- **Coal plants** - *cheap* to run but *high emissions*.
- **Gas-fired plants** - *energy security concerns* but *low emissions*.
- **Nuclear** - *expensive* to build but *zero operating emissions*.
Generation investment decision-making

Uncertainty is the only Certainty….

Key cost factors are uncertain

- Future fossil fuel prices
- Demand growth
- Climate change policy (i.e. carbon price)
- Other cost factors such as plant capital costs.

Increase complexity of generation investment decision making.

Uncertainties need to be taken into account in generation investment decision making.
Uncertainty in key cost factors

- Significant fluctuation in fossil-fuel prices over the last decade
 - Exposed to fuel price risks and availability.
Uncertainty in key cost factors

- Demand projection can change markedly over planning horizon
 - Changes in economic outlook, significant penetration of distributed RE

Revised annual energy growth rates (NEFR, 2012)
Uncertainty in key cost factors

- Climate change policies – putting a ‘price’ on carbon emissions through either ‘market based’ mechanisms or ‘carbon tax’.

Spot Price of EU Allowances

- IEA modelling of carbon prices is around $100/tCO₂ by 2040-2050.

Implications of future uncertainties

- Uncertainties in fuel & carbon prices have significant implications for energy security – leads to energy price fluctuations
 - *Price stability has economic value*

- **Risk** – *arise* due to *many possible outcomes* as a result of uncertainty.
 - *The likelihood of loss or unexpected high costs (or low returns)*
 - *Risks can be quantified by the spread of a set of possible outcomes.*

- Generation options (or portfolios) that are less exposed to risks and uncertainty help strengthen energy security of a nation.
Existing generation investment frameworks

Existing models such as WASP, MARKAL have significant capabilities and powerful features but…

- Focus on finding the least-cost technology (or portfolio mix) based on deterministic assumptions on key cost factors
 - Deterministic assumptions on key factors including future demand, future fuel costs, and construction costs of possible generation investment options.
- Multiple objectives in generation investment and planning
 - Costs, risks, CO₂ emissions.
 - Potential tradeoff between expected future industry generation costs VS the uncertainty associated with such costs (“cost risks”)
Probabilistic Generation Portfolio Modelling

- A modeling tool to assess many possible future generation portfolios given a range of future uncertainties and multiple criteria objectives.

- Combine three key techniques:
 - **Load Duration Curve (LDC)** optimal generation mix concepts.
 - **Monte Carlo simulation** technique to formally incorporate uncertainties.
 - **Generation Portfolio analysis** to determine an ‘Efficient Frontier’ of expected overall costs, associated cost risks and emissions for different generation portfolios.

- Results can be used to explore various issues and tradeoffs between multiple (and conflicting) criteria - costs, associated risks and emissions.

- A range of technologies can be included.
Probabilistic Generation Portfolio Modelling

Load duration curve

<table>
<thead>
<tr>
<th>Percentage of max. demand (%)</th>
<th>Percentage of time (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

MCS process

- Identify key uncertain variables
- Assign probability distributions to the uncertain variables
- Generate random samples ($i = n$ samples)
- Range of possible results represented by a probability distribution
- Calculate total costs and emissions

Output from MCS represented by a prob. distribution - *Mean and SD can be used to measure expected cost and risk profile*

Generation Portfolio Analysis

Expected (mean) cost and cost spread (SD) of each portfolio is plotted to compare tradeoff between **costs VS risks**.

Optimal generation portfolios fall along “**Efficient Frontier**” (*Costs can only be reduced by accepting higher cost risks*).
Probabilistic Generation Portfolio Modelling

** Inputs **

- Generator characteristics of each technology
- Demand projection in a future year
- Prob. distributions of uncertain parameters
 - fuel and carbon prices
 - Capital costs
 - Demand

Distributions of uncertain parameters can be estimated based on historical data and informed expert opinions

The model can be calibrated for any electricity industry.
Probabilistic Generation Portfolio Modelling

- **Outputs** provide a full spectrum of possible results
 - *Annual portfolio generation cost* ($ or $/MWh)
 - *Cost spread* (representing ‘cost risk’)
 - *Emissions*

Examples of generation cost distributions for different generation portfolios.
Some examples

Cost, risk (SD of costs) and emissions of every possible generation portfolio mix are plotted.

- **Cost-risk Efficient frontier containing optimal portfolios**
Some examples

Efficient frontiers showing tradeoffs between costs and emissions
Some examples

Efficient frontiers for different expected carbon prices
Key aspects of the model

- Simple and transparent – simple input data, reasonable runtime.
- Sophisticate approach to incorporate uncertainty and risk assessment.
- The way results are presented provides a basis for comparing tradeoffs among possible alternative generation portfolios
 - Rather than focusing only on a particular generation portfolio (e.g. least cost portfolio)
 - Taking into account wider multiple criterion electricity industry objectives (i.e. cost, risk and emissions).

The model is implemented using MATLAB software
Applications of the Model

- The modeling tool has been applied to a number of case studies to explore various issues.
 - The impact of fuel and carbon price uncertainty.
 - The influence of carbon pricing on the level of CO\textsubscript{2} emissions.
 - The impact of carbon price on the economic value of renewables.
 - The role of nuclear power in future generation portfolios and its dependency of climate policy.
 - The potential value of high wind and PV penetration in the Australian National Electricity Market (NEM).
 - The role of renewables in mitigating the impact of uncertainty.
 - Analysis future generation portfolios in Thailand

- Helps facilitate energy and climate policy decision making.
Current work

- Exploring *investment and policy support frameworks for facilitating high RE penetrations in Australia’s EI*
 - Extending and applying the modelling tool to analyse different policy options and scenarios including DSP, RETs etc.
 - Identifying opportunities and challenges for driving investment and facilitating the integration of RE into future generation portfolios.
 - Key focus is on maximising synergies
 - Synergies among RE technologies and other technology developments such as EV and storage.
 - Synergies between multiple RE policy instruments

- Applying the modelling tool to analyse
 - Revenue and profit of generators in the NEM
 - The impact of gas price uncertainty on future generation portfolios in the NEM
Thank you, and Questions?
peerapat@unsw.edu.au

Many of our publications are available at: www.ceem.unsw.edu.au