

Wind as the new "Base Load"

The role of wind in future electricity markets

Dr Jenny Riesz April 2014

AECOM

Centre for Energy and Environmental Markets

Wind displaces baseload generation

Least cost optimum generation mix:

Optimal capacity of coal-fired generation (baseload) declines as wind is added

J. Riesz, J. Gilmore, (2014) "Does wind need "back-up" capacity – Modelling the system integration costs of "back-up" capacity for variable generation". Accepted for presentation at the 2014 International Energy Workshop (Beijing)

Flexibility of existing power systems

- IEA study: All regions studied have sufficient flexibility to support 25% 40% variable renewables
- If accept a few hours of curtailment per year numbers increase considerably (>50% in some systems)
- Low "turn down" levels are important

Environmental Markets

SYDNEY . AUSTRALIA

• Increasing technical flexibility (eg. Batteries, flexible plant) increases potential penetration of VRE further

5

Possible 100% Renewables technology mix (NZ) (by capacity)

SYDNEY . AUSTRALIA

Centre for Energy and

Environmental Markets

Mason, I.G., Page, S.C., Williamson, A. G., (2013) "Security of Supply, energy spillage control and peaking options within a 100% renewable electricity system for New Zealand" Energy Policy 60, 324-333.

What about the *market*?

How do generators recover costs?

How do we maintain accurate investment incentives?

SYSTEM ADEQUACY

Managing system adequacy in energy-only markets

In theory:

Contracting between customers and generators allows risk management (more certain revenues for generators, and more certain reliability for customers)

Capacity (MW)

This requires full demand side participation!

Managing system adequacy in energy-only markets

- In reality:
 - No market has widespread demand side participation
 - Although growing in some (eg. PJM)
 - Regulator sets market price cap, based upon assumed customer willingness to pay (eg. Australian NEM)
 - Price cap must be high enough to ensure sufficient generation investment, even when scarcity occurs rarely

Capacity (MW)

Managing price volatility

- Energy-only markets should exhibit high price volatility
 - Periods of extreme prices necessary for recovery of fixed costs
- Market participants manage price volatility via: _
 - Contractual arrangements mature derivatives market, or
 - Vertical integration

SYDNEY . AUSTRALIA

Impact of renewables

How much would scarcity prices need to increase?

Analysis for Australian NEM:

	MPC (\$/MWh)
Present Market Price Cap (MPC)	\$13,100
To maintain historical aggregate revenues (with move to 100% renewables)	~\$30,000
Sufficient aggregate revenues to support 100% renewables	~\$60,000 to \$80,000

For New Zealand – will need to accept increasingly extreme scarcity prices

J. Riesz, Iain MacGill, "100% Renewables in Australia – Will a capacity market be required?" Proceedings of the 3rd International Workshop on the Integration of Solar Power into Power Systems, London, October 2013.

Perhaps this isn't crazy...

Residential	20,710
Small business	413,120
Large business	53,300
Average	94,990

Centre for Energy and Environmental Markets

Cets Oakley Greenwood, "NSW Value of Customer Reliability", Australian Energy Market Commission, 2012

Issues with allowing higher extreme prices

Increased costs of hedging

Increased prudential obligations

• Increased barriers to entry for retailers

Discouragement of inter-nodal contracting

 May interfere with generation locational decisions in the absence of perfect hedging with FTRs

Cost recovery – variable renewables?

If generation mix is least-cost optimised, all generator types earn revenues that precisely cover costs (in theory)

J. Riesz, I. MacGill, J. Gilmore, "Examining the viability of energy-only markets with high renewable penetrations", Accepted for presentation at the IEEE Power and Energy Society meeting, Washington DC, July 2014.

Will energy-only markets work with high renewables?

SYDNEY . AUSTRALIA

Issues for New Zealand

Increasing importance of contracts/futures market

- Consider mechanisms to increase participation in futures markets
- Disincentivise vertical integration? (reduces liquidity and contracting options)

Increasing importance of Demand Side Participation

 DSP allows customers to individually choose their desired level of reliability – reduces need for regulatory intervention

Operational considerations – market design

- Lots of other considerations in market design for integrating variable renewables
 - Accessing flexibility on operational and investment timeframes

Discuss at 1.45pm

- "The Market & Wind" parallel session

Thank you

jenny.riesz@gmail.com

www.ceem.unsw.edu.au

www.ceem.unsw.edu.au