

Solar PV in ASEAN – Key Challenges and Opportunities

Dr Peerapat Vithayasrichareon Centre for Energy and Environmental Markets (CEEM), UNSW Australia

Clean Energy Forum of East Asia Summit Haikou, China 18-19 November 2015

www.ceem.unsw.edu.au

Our Centre at UNSW Australia

The Centre for Energy and Environmental Markets (CEEM) inspires and informs the transition to a more sustainable energy future nationally and internationally through objective interdisciplinary research.

Presentation outline

- Background ASEAN context
- Challenges for ASEAN Electricity Sector
- Key technology trends and renewables in ASEAN
- PV potential and progress in ASEAN
- Policies and measures to support PV deployment
- Barriers to PV deployment
- PV in Australia lessons for ASEAN

ASEAN context

- Large population size 9% of world population
- Fast socioeconomic development
- One of the fastest developing regions in the world
- Play an increasing important role in the world energy demand
 - Rapid energy demand growth
 - 5% share of world energy demand compared with 2% in 1980
- Large investment in electricity supply infrastructure required to meet electricity demand growth.
- Five largest energy consumers in ASEAN are Indonesia, Thailand, Malaysia, Philippines and Vietnam

ASEAN context

Electricity consumption per capita

- Fast electricity demand growth around 5% per year
- Low per capita electricity consumption one fifth of the OECD.
- Brunei and Singapore have the largest kWh consumption per capita

Centre for Energy and Environmental Markets

ASEAN Electricity Sector

Minimal non-hydro renewables

Environmental situation in ASEAN

- CO₂ emission is increasing due to increased demand, large share of fossil fuel in electricity generation.
- CO₂ intensity (per kWh of electricity output) in ASEAN is high
 > High-emitting generation sources, inefficient power stations
- Share of global CO₂ emissions is 4% compared with 1% in 1980.

Characteristics of ASEAN

Challenges for electricity sectors in ASEAN

- Satisfying electricity demand growth in a sustainable manner minimise costs, energy security, environmental impacts
- 134 million people in ASEAN have no electricity access 22%.
- Renewables have the potential to address most of these challenges
 - Cheap to run, no emissions, high investment cost but reducing rapidly.
 - No energy security concerns due to reliance on fuel import or fossil-fuel price fluctuation

Key technology trends

Leading countries in Asia Pacific: Japan, Korea, Australia, Thailand, Taiwan

- PV is one of the fastest growing RE technologies worldwide
 - Rapid technological progress and cost reductions.
 - Potential to address energy security and climate change concerns.
 - Third most important RE sources in terms of installed capacity
- Largest growth has been in Europe but Asia (excl. China) is catching up

PV potential in ASEAN

- Huge renewable energy potential in ASEAN
 - Hydro, solar, biomass
- PV deployment is still low economic and non-economic barriers
 - PV attractiveness i.e. cost competitiveness, irradiation, size of the elec. market.
 - Country's attractiveness
 - i.e. political and
 - business environment

Country Investment attractiveness

PV potential in ASEAN – Global Context

Progress of PV in ASEAN

- Majority is in solar farms but less for distributed and off-grid PV systems
- Thailand, Malaysia and Philippines are leading the development.
- Potential to become a new manufacturing base of PV systems
- Thailand has the highest PV capacity
 - 1.5 GW in 2014 but is increasing to 2.5 GW by the end of 2015
 - Feed-in-Tariffs (FiTs) with long-term PPAs (at \$0.2/kWh for 25 years)
 - Mainly solar farms but expanding to residential

- ASEAN has one of the largest solar farms in the world – 84 MW capacity
 - Lopburi, Thailand
 - > 220 hectare, 0.5 million solar panels
 - US\$335 million investment

Influence of energy and climate policies

- Policies have a key role to play to promote and ensure successful integration of RE technologies.
 - Increase the value of RE in relation to fossil-fuel technologies
 - increase confidences for investment and deployment in solar PV
- As with other new RE tech, PV remains a policy driven market
 - FiTs are the main policy for driving deployment of renewables in ASEAN.
 - New investment/installation is influenced by support schemes.
 - Asia and Pacific region has become a significant market for PV installation China, Korea, Japan, Australia, Thailand

Renewables supporting measures

Regulatory policies and mandate	 RETs, carbon pricing, FiTs, RPS, RE Certificates (REC). RET schemes create demand for additional RE energy by placing a legal obligation on electricity utilities. FiTs is the most widely used scheme
Fiscal incentives	 Address the cost and finance barriers that hinder investment in RE technologies Capital subsidies, rebates and tax reduction Providing social, economic, environmental benefits
Public financing	 provided by governments in the forms of loans and grants to support innovation in RE technologies

Energy and climate policies

- Countries with RE policies and targets have increased significantly
- Energy policies vary across ASEAN countries depends on political and economic situations, resource endowments
 - Common themes increase energy security, reduce costs, environmentally sustainable.

Key Energy Policies and RE Targets (1)

Country	Key Energy Policies	Renewable targets
Indonesia	 Increase electricity access to 99% by 2020 26% GHG reduction targets by 2020 Reduce the share of fossil fuel 	 26% renewable electricity by 2025 160 MW of PV capacity or 1% share of generation by 2025
Thailand	 Diversify fuel mix from natural gas Reduce energy intensity by 25% by 2030 compared with 2005 levels 	10% renewable electricity by 20216 GW of PV by 2036
Malaysia	 Reduce energy intensity by 10% by 2025 compared to BAU Reduce CO₂ intensity by up to 40% compared to 2005 levels by 2020. 	 2.1 GW of renewable electricity by 2030 14% renewable electricity by 2030
Vietnam	 100% electricity access by 2020 Reduce CO₂ intensity by 10% by 2020 compared with 2010 levels 	 5% renewable electricity by 2020
Philippines	 Increase electricity access to 20% by 2017 (for small township) Expand the grid to interconnect major islands 	 40% renewable energy by 2020 15 GW of renewables by 2030 Additional 280 MW of PV

Key Energy Policies and RE Targets (2)

Country	Key Energy Policies	Renewable targets
Singapore	 Energy supply diversification Reduce energy intensity by 35% by 2030 compared with 2005 levels Reduce CO₂ intensity by 10% below the 2020 BAU levels 	5% share of renewables by 2020350 MW of PV by 2020
Brunei	 Improve energy efficiency Reduce energy intensity by 25% by 2030 from 2005 levels 	10 MW PV by 203010% RE by 2035
Myanmar	 Reduce primary energy consumption by 8% by 2030 compared to BAU 	• 15-20% RE by 2020
Cambodia	Develop hydropowerIncrease electricity access through off-grid RE	• 15% RE by 2015
Lao PDR	 Increase electricity access to 90% by 2020 Upgrade interconnectors to increase power exchange between Vietnam and Thailand 	 30% RE by 2025 33 MW from solar

(OECD/IEA, 2013), (REN21, 2015)

Policy Measures for PV

- In addition to RE targets, effective financial and non-financial measures must also be in place
- Policies related with solar are bundled with other RE technologies

Barriers to PV development in ASEAN

Social	 Lack of public awareness on the impact of climate change and the benefits of RE technologies
Economic	 Relatively high capital and financing cost at present.
Technical	 Lack of knowledge in the technology, installation, maintenance Impact on the grid due to its variability and partly unpredictability Inadequate transmission networks
Environmental	 Land size for utility-scale solar PV – limited in some countries
Institutional	 Lack of effective policies - uncoordinated and incoherent policies, weak RE targets Regulatory arrangements - long process in obtaining licenses Political stability

Overcoming the barriers

Social	 Disseminating information and consumer awareness on the impact of climate change and the benefits of PV Transparency and public involvement in the electricity sector
Economic	 Providing fiscal incentives and public financing Increase R&D efforts to reduce costs and increase efficiency Internalising environmental externality costs
Technical	 Encourage more research and studies on the grid impact of PV Need other grid technologies to complement PV – Storage options, smart grids
Environmental	 Build solar farms in remote areas Promote residential and community-scaled PV (e.g. rooftops)
Institutional	 Schemes with fair remuneration and predictable level of support FiTs, RPS, Net metering Coherent policies among different governmental agencies Streamlined procedures for providing permits/licences

Regional collaboration is key

- Collaborations among ASEAN countries are essential to achieve higher PV deployment (and other RE technologies)
 - R&D collaboration, transfer of knowledge, know-how.
 - Optimising and sharing of solar resource through cross-border interconnection
 - Geographical diversifications improved matching of PV generation and demand across different countries
- Common regulatory frameworks need to be established to ensure benefits for every country in the region.
- ASEAN Plan of Action for Energy Cooperation (APAEC) 2016 2025 provides a good framework – but need serious commitment and inputs from all member countries.

PV in Australia – Lessons for ASEAN

- 2.4 million installed, 4.5 GW capacity
- 5.6 TWh of PV generation (2.5% of total electricity consumption)
- Mostly grid-connected distributed but off-grid is increasing

PV in Australia – lessons for ASEAN

- A range of PV support measures
 - Regulatory policies and mandates RE targets, RPS, FiTs, Carbon pricing (abolished in 2014)
 - Fiscal incentives capital subsidies, investment funds
 - Public financing loan and grants for R&D and commercialisation

PV in Australia – Lessons for ASEAN

 According to the National Transmission Network Development Plan (NTNDP), PV will be the largest growth technology.

PV in Australia – Lessons for ASEAN

 According to AEMO 100% renewable modelling study Operational issues are manageable – no fundamental technical limitations to operate the 100% renewable power system generation portfolios

PV in Australia – Lessons for ASEAN http://pv-map.apvi.org.au/

- There are tools and publicly available data on solar PV
 - Disseminating information to facilitate investment and research (capacity installed data, historical and live performance data)
- An example Live solar PV map is developed by the Australian PV Institute (APVI) to track the uptake and impact of PV

Summary and a way forward

- Huge potential for solar PV in ASEAN but needs support schemes
 - High solar irradiance in ASEAN but PV energy penetration level is still extremely low (less than 1%)
 - Need effective and coordinated policies and support schemes.
- Solar PV can help to address some of the main challenges facing ASEAN electricity sector
 - Electricity access in remote areas (Philippines, Indonesia, Cambodia),
 - Energy security diversify fuel mix from fossil-fuel
 - Environment climate change and local air pollution
- Need to strengthen regional collaboration among ASEAN countries in a number of aspects

Thank you, and Questions? peerapat@unsw.edu.au

Many of our publications are available at: www.ceem.unsw.edu.au

www.ceem.unsw.edu.a