

Nicholas Cutler. <u>n.cutler@unsw.edu.au</u> 23rd June, 2010

```
© CEEM, 2010
```


Centre for Energy and Environmental Markets

Control of the register of the regist

Centre for Energy and Environmental Markets UNSW Wind power forecasting methods of use Wind power forecasting can be used in two ways: Best guess generation used automatically for commercial optimisation (eg. in electricity markets) Multiple scenarios provided 9 12 15 18 21 24 27 30 33 for visual interpretation to characterise forecast uncertainty and assist decision-making in critical e 40 situations (eq. Managing ຣັລດ power system security and <u>P</u> 20 large rapid changes in aggregated wind power) 4 7 10 13 16 19 22 1 4 7 Local Time [hour] on 20-21 July 2009 at Lake Bonney 1

UNSW

Outcomes from the PhD thesis (2)

- Large, rapid changes in wind power in Australia are largely caused by horizontally propagating synoptic weather phenomena:
 - Eg. Cold fronts and low pressure systems
- By their nature, statistical forecasting methods based on past observations will struggle to provide useful information on large rapid changes
- Numerical Weather Prediction (NWP) systems are the best tool available to forecast significant changes in the weather

Centre for Energy and

UNSW

NWP systems

- Represent the atmosphere on a coarse horizontal grid (25 km for global ECMWF system) and cannot directly model local, fine-scale detail topographic effects on the wind
- Good at forecasting broad synoptic weather phenomena (such as cold fronts and low pressure systems) and how they affect nearsurface winds out to around 48 hours ahead
- Uncertain in the timing, or more generally the precise position of such synoptic weather phenomena

UNSW

Outcomes from PhD thesis

- Identified that conventional single grid point extraction and corresponding time-series forecast may be missing useful information in NWP system
 - Misplacement errors during large rapid changes in wind can cause large differences in single grid point forecast
- Developed technique to display multiple grid point information from NWP systems to characterise wind power forecast uncertainty due to misplacement errors
 - Problem: the wind at each grid point is influenced by the local topography \rightarrow

UNSW

Animated wind power field versus NWP ensembles

- Both show uncertainty information in wind forecast:
 - Wind power field uncertainty based on multiple grid points, and assuming potential misplacement errors. Field highlights potential chronological behaviour
 - Ensembles are based on different (perturbed) initial states of the atmosphere, or different physical assumptions
- Both reduce uncertainty when scenarios are similar
- Spatial resolution is usually compromised to run the NWP system multiple times for an NWP ensemble
- Wind power fields show chronological behaviour between the NWP system time-stamps, ensemble scenarios could suffer from sampling error

