

Renewable Technologies in the Future NEM

100% Renewables for Australia?

Dr Jenny Riesz

Australian Power Institute (API) Summer School – Wednesday 24th February 2016

Who am I?

Australian Energy Market Commission

Overview

100% Renewables:

Worth thinking about?

Technically feasible?

Costs?

Will the market work?

Global New Investment in Renewable Power and Fuels.

In 2014, renewables accounted for 59% of net additions to global power capacity.

REN21 Renewables 2015 Global Status Report

Source: Frankfurt School-UNEP and BNEF

Wind Power Capacity and Additions, Top 10 Countries, 2014

Additions are net of repowering.

REN21 Renewables 2015 Global Status Report

Solar PV Capacity and Additions, Top 10 Countries, 2014

What about Australia?

New coal?

- New coal now costs more than renewables
- Regulatory risks means very high cost of capital, if they can get financing at all

Gas?

- Baseload CCGT can't get competitive gas supply contracts
- Competition with LNG export market

Nuclear?

- More expensive than renewables (large cost risk)
- No existing industry or experience

Keep using what we've got?

- Ageing generation fleet
- By 2030, 65% of Australia's coal-fired power stations will be over 40yrs old

UK: Hinkley Point C \$154/MWh 35yr PPA

Lowest cost trajectory for the National Electricity Market

Given projected gas and carbon prices, and cost risk profiles

GHG emissions ranges as recommended by the Australian Government Climate Change Authority

- Power systems with very high renewable proportions of renewables appear inevitable
 - It's not a question of "if", it's a question of when.

100% renewables – worth thinking about?

But is it even technically feasible?!?

Renewable technologies Variable & non-synchronous

Proportion of variable renewables

A new power system paradigm

Wind displaces baseload generation

J. Riesz, J. Gilmore, (2014) "Does wind need "back-up" capacity – Modelling the system integration costs of "back-up" capacity for variable generation". International Energy Workshop (Beijing)

Least Cost Mix (UNSW modelling)

Present

AEMO Modelling of 100% Renewables

- Australian Energy Market Operator (AEMO)
 - Landmark modelling study in 2013
 - Most detailed analysis of 100% renewables to date
 - First time 100% renewables considered by an official planning body in Australia

A massive data collection process

Hourly traces for wind/solar technologies developed based upon historical observations (2003-04 to 2011-12)

- Generation mix to meet the Reliability Standard:
- Diverse portfolio is key

New transmission

Example: Summer, Scenario 1, 2030

Example: Winter, Scenario 2, 2030

Model constrained to minimum 15% synchronous generation in all periods (maintain inertia, fault

AEMO's assessment

- Reliability standard maintained
- Operational issues "appear manageable" (high level review, based upon international research)

"High penetrations of semi-scheduled and non-synchronous generation would constitute a system that may be at or beyond the limits of known capability and experience anywhere in the world to date..."

but...

"There are **no fundamental technical limitations** to operating the given 100 per cent renewable NEM power system generation portfolios that have been identified."

Renewable integration challenges

FREQUENCY CONTROL

Matching supply and demand at all times

Regulation Service:
Manages variability
within 5min dispatch
intervals

Regulation costs likely to increase significantly

	Wind installed	Regulation requirement	Regulation settlements	Regulation cost for wind generators
2015	4 GW	± 120 MW	\$5 million pa	\$0.40 /MWh
2020	8 - 10 GW	± 800 MW	\$200 million pa	\$8 /MWh
2030	??	??	??	??

Significant opportunities for optimisation

- Address inefficiencies and "unfair" procedures
- Some apparent in SA already, many more will be coming

FREQUENCY CONTROL

Matching supply and demand at all times

Regulation Service:
Manages variability
within 5min dispatch
intervals

Inertia: Stabilises frequency on very short timeframes (seconds)

Managing low inertia systems

- Can be managed by minimum synchronous generation limits
 - Ireland (50% minimum), NEM (interconnector constraints)
- May be appropriate initially, but costs escalate as renewables grow
- Significant value in exploring alternatives
 - Lots of options, but which are most technically and economically feasible?
- Implementation mechanism required

19 System Cost (\$billions per annum) 18 \$3.6 billion 17 per annum 16 15 14 13 12 0% 10% 20% 30% 40% 50% Synchronous Generation Constraint (Min % of demand)

P. Vithayasrichareon, T. Lozanov, J. Riesz, I. MacGill, "Impact of Operational Constraints on Generation Portfolio Planning with Renewables", 2015 IEEE PES GM, Denver

J. Riesz, B. Elliston, "Research priorities for renewable technologies - Quantifying the importance of various renewable technologies for low cost renewable electricity systems," To be submitted to Applied Energy, 2015.

Frequency control - seconds (inertia)

 Displacement of synchronous generation

Frequency control - minutes (regulation)

 Increasing variability and uncertainty → increase in regulation reserves

Frequency control - hours (ramping)

 Managing long wind & PV ramps

Fault level in-feed

- Non-synchronous technologies don't provide sufficient fault feed-in
- Protection systems may no longer be able to determine when and where a fault has occurred

Grid code performance standards

 New reactive power and voltage support capabilities required during disturbances

Reliability and Resource Adequacy

 Need to assess differently to present

AEMO Conclusions:

"Many issues remain to be determined without doubt, but it is valuable to note that this operational review has uncovered no fundamental limits to 100% renewables that can definitely be foreseen at this time."

 Transition will occur dynamically over time, allowing proper scope for learning and evolution with additional experience gained.

100% renewables – Technically feasible?

A question of cost...

	Cost for 100% renewables (AEMO)		
Total capital cost including transmission	\$219 - 332 billion		
Wholesale cost including opex	\$111 - 133 /MWh		
140			
120 Ş	100% Renewables		
Wholesale Electricity Price (\$/MWh) (Annual average volume weighted)	—— QLD		
le Electricii nual average vo	VIC SA TAS		
Wholesa (Ann	Average		
C			
^	288 288 200 201 201 202 200 200 200 200 200 200		

Components of retail prices

- Increase of 6-8c/kWh on retail tariffs (20-30c/kWh)
- 20-30% increase

Although it's a different story for industry...

Australia's electricity consumption by sector (2012-13)

Costs are going up anyway...

UNSW modelling

- High wind, low PV
- Costs increase ~ linearly to 80% RE
- Wind displaces coal

Technology availability

- Can meet reliability standard with various technologies unavailable
 - Robust ability to achieve 100% RE
- Costs \$65 \$87 /MWh
 - Wind typically provides ~70% of energy, most expensive scenarios don't have wind

J. Riesz, B. Elliston,
"The impact of
technology availability on
the costs of 100%
renewable electricity
generation scenarios for
Australia", 38th IAEE
International
Conference, Antalya,
Turkey, May 2015.

Portfolios within \$10/MWh (15%) of lowest cost

Boxes: 1st & 3rd Quartiles, Lines: Max & Min, Crosses: Median

- Bioenergy (even a very small amount) also brings costs down significantly
 - Importance of enabling "peaking" renewables to achieve 100% RE
 - But same result from:
 - Small amount of natural gas turbines (peaking)
 - Rarely activated demand side participation
 - Batteries NOT equivalent for most applications (high capital cost)

- Non-synchronous penetration (NSP) limit also has significant effect on costs
 - Especially when other technology combinations aren't available
- Value in research to minimise the NSP limit (eg. wind & PV integration)

- Costs significantly affected by:
 - Non-synchronous penetration (NSP) limit
 - Lack of wind
 - Lack of biogas GTs (peaking technology)
- "Baseload" renewables relatively less important (CST, geothermal)

 100% renewables (or very high renewables) appears similar in cost to other possible power systems in the future

100% renewables - Cost competitive?

What about the *market?*

Generators offer close to SRMC

Price close to zero in majority of periods

How do generators recover costs?

How do we maintain accurate investment incentives?

SYSTEM ADEQUACY

Market modelling with high renewables

Increase wind & PV → Prices fall

Wind & PV themselves are particularly affected (especially PV)

- Greater incidence of zero and low prices as renewable proportions grow
- BUT, also greater incidence of extreme high prices
- May not need to increase Market Price Cap very much to maintain same incentives to contract?

Top priced 200hrs:

- Very low PV, moderate wind
- High demand, and coal, CCGT & OCGT almost fully operating (full benefit of high prices)
- Greater demand for cap contracts? (more periods at extreme prices)
- Invest in PV with caution

Increasing the MPC:

- Main mechanism to increase investment to meet the reliability standard
- Successfully increases average prices
- Significantly increases revenues of OCGTs, CCGTs and coal
- Increases wind profitability somewhat
- PV profitability unchanged at high renewable levels (too much PV)

Key conclusion:

 The present energy-only market could work, if we can increase the MPC, and the contracts market is sufficiently robust.

Will the market work with high renewables?

is wise - new

over time

issues will arise

Summary

100% renewables – worth thinking about?

Inevitable - a question of when

100% renewables – technically feasible?

• Yes, with high confidence, although many technical issues to address

100% renewables – costs?

 Appear manageable, and likely lower than other generation types (given anticipated gas and carbon costs)

100% renewables – will the market work?

 Will challenge existing market models, but dramatic market reform is unlikely to be warranted at this time.

Thank you

ceem.unsw.edu.au jenny.riesz.com.au

Nuclear cost risk

- What is the cost risk associated with nuclear?
 - Important factor for comparison with other technologies
 - Quantified uncertainty in nuclear cost components
 - Combined with Monte Carlo simulation
- Most important contributors to nuclear cost risk:
 - Pre-construction and construction cost escalation
 - Pre-construction and construction period duration

Construction period cost escalation

Jurisdiction	Cost escalation (real, compounded p.a.)
French PWR build program (58 reactors, 1970-2000)	3.6%
US nuclear build program (99 reactors, 1970-1990)	8.1%
Flamanville-3 (France) (1 reactor)	9.9%
Olkiluoto-3 (Finland) (1 reactor)	12.2%

Applied weighted average cost escalation rate

Impact on Levelised Cost of Energy (LCOE)

Probability Distributions

- Nuclear costs have an 80% probability of exceeding AU\$170/MWh
- Nuclear costs have a 50% probability of exceeding AU\$278/MWh
- The mean LCOE for nuclear is AU\$515/MWh, with a standard deviation of AU\$2,646/MWh

