

Improving Energy Sustainability in Poor Rural Communities in Indonesia

ANZSES Information Evening, Sydney, 30 September 2008

Maria Retnanestri m.retnanestri@unsw.edu.au

www.ceem.unsw.edu.au

Centre for Ener Environmental

Presentation Outline

- Background about Indonesia
- Electrification ratio & socioeconomic development in Indonesia
- Renewable energy potential & installed capacity
- Visit to PV sites, positive findings & issues
- The I3A Framework: Implementation, Accessibility, Availability, Acceptability
- Assessment of PV case studies using the I3A framework
- The Australian Development Research Award (ADRA) research project

Centre for Energy and Environmental Markets Background about Indonesia Population - Jaka Electre Installed Co Large Hydroc Gas: 12

The problems in extending the Indonesia's power grid:

- Geographic/demographic characteristics of the archipelago
- High cost of transmission, low level of demand

Solutions for remote area electrification:

• Diesel, Micro hydro, PV, Wind

UNSW

Key figures

Population: 237.5 million - Java Island: 60% - Pop'n per sq km: - Jakarta: 13,000, Papua: 7 -Average: 1,000

Electrification Ratio: 54%

Installed Capacity: 22.5 GW Coal-fired: 31%, Combined Cycle: 28%, Large Hydro: 14%, Diesel: 13%, Gas: 12%, Geothermal: 2%

Private generation: 7.2 GW

Average kWh/capita: 484 (NTT- 61; Jak- 2800)

Demand growth: 8%

Centre for Energy and Environmental Markets

UNSW

Electrification Ratio & Socioeconomic Development Electrification Ratio, Human Development Index and Human Poverty Index

	Indonesia	Australia
Population (2008)	237.5 million	21 million
GDP/capita (2007)	US\$ 3,700	US\$ 36,300
HDI (2005)	0.728 (107/177)	0.968 (3/177)
Population below poverty line (2006)	17.8 % (approx. 40 million)	-
Energy Prod; Consump, GWh	126 ; 108	236 ; 219
kWh/capita	484	11,849
fossil fuel CO2 (tons per capita)	1.7	16.2

HDI components: life expectancy, educational attainment and standard of living HPI components: poor health, illiteracy, access to clean water and earning below a dollar a day

3

Renewable Energy Potential & Installed Capacity in Indonesia

RE Systems	Technical Potential	Installed Capacity
PV	4.8 kWh/m2/day	>10 MWp
Micro Hydro	460 MW	84 MW
Biomass	50 GW	302 MW
Wind	4 m/s	0.5 MW
Geothermal	27 GW	800 MW

RE has the potential to contribute to rural community socioeconomic development. However, due to the decentralized nature of RE, a holistic approach is required, that considers:

- The sustainability dimensions of RE delivery: institutional, financial, technological, social, ecological
- The hardware, software & orgware aspects of RE delivery, where:
 - RE Hardware: The equipment used in RE systems

Centre for Energy and Environmental Markets

- RE Software: The skills & information required to master the use of RE hardware
- RE Orgware: The set of institutions required to develop, implement & maintain RE systems

Off-grid PV Applications in Indonesia: Some positive findings

UNSW

PV acculturation into local life: Users invested in bigger PV capacity systems, PV for clean water provision, gardening, rural telephone, communication to support economic activities, back up power \rightarrow measures of user satisfaction with PV benefits & reliability.

Off-grid PV Applications in Indonesia: Some positive findings

PV use in the disaster risk management (DRM) context \rightarrow Community resiliency

UNSW

1&3. Aceh (2005): PV for street lighting, lighting at refugee barracks & communications

2. A 3,600t 10 MW diesel barge, swept 4 km inland, Banda Aceh

4. NTT (1992): PV for communications after the Maumere tsunami

Photos: Courtesy of Mambruk Enery International, Azet Surya Lestari, Bappenas, Claus Dauselt

Users "disconnected" from technology: Lack of local capacity to adopt PV to better fit local conditions; Lack of adequate after sales service infrastructure

Beyond project life: Lack of adequate after sales service infrastructure, Social fragmentation

The I3A framework: Assessment & design tool for a sustainable RE delivery I3A Framework: An **implementation** that maintains RE energy service **accessibility** (financial, institutional, technological), **availability** (technological, institutional) and **acceptability** (social, ecological), considering the hardware, software and orgware aspects of PV energy service delivery during & beyond RE project life

UNSW

PV Case Studies: General Background

Case Studies Features	CS 1. The self-reliant / Organic SHS Market in Lampung	CS 2. The WB/GEF SHS Project 1997-2003 in Lampung & West Java	CS 3. The PLD Concept in NTT (SHS, Hybrid PV- Wind-Diesel System)
Geography	High rainfall, fertile land	High rainfall, fertile land	Dry land
Population (2003)	6.9 m; 196 p/km2	38 m; 1100 p/km2	4.1 m; 86 p/km2
GDP / capita (2002)	4.1 m Rp (US\$ 500)	5.8 m Rp (US\$ 650)	2.2 m Rp (US\$ 250)
Labour composition	71% farmers	37 % farmers	Farmers & fishermen
Poverty (2003)	22% (1.5 m)	13% (4.9 m)	29% (1.2 m)
Electricity Generation	7.5 MW (44 small diesel generators)	16.35 GW (large thermal & hydro generators)	151 MW (4Hydro, 556 small diesel generators)
Electrification Ratio	37%	51%	22%
kWh/capita	186	598	61

Implementation/Delivery Institutional: Stakeholders, Interrelationships, Roles, Acknowledgement of all Stakeholders Interests

Facilitator role: Secure PV adoption in the direction deemed desirable by Sponsor, balancing this with Users requirements

- Vertical Network: Centralized, Users are passive participants in the PV delivery process (Case Study2).
- Horizontal Network: Decentralized allow Users to be active participants (Case Study 1).

• Hybrid Network: Case Study 3 used combined vertical (in terms of technical design) and horizontal (in terms of project implementation & ongoing operation), allowing Users to be active participants in the RE delivery process.

Implementation/Delivery Institutional Aspect: Accommodation of local requirements

UNSW

The 120 kW Cinta Mekar Village MH, West Java. Accommodation of local requirements: A written agreement was made to allocate at least 300 litre/second to irrigate 50 hectares of fields prior to water being used for electricity generation.

PLD Pusu: A monthly payment session at PLD office, May 2005. Active involvement of **Users:** Users meet regularly to elect cooperative board members, define rules of payment, fines, fund management, etc.

Relative position of PV target/users at the project star

Centre for Energy and Environmental Markets

• Case Study 1: Stage 4-5: Users were familiar with SHS (system configuration, load management) • Case Study 2: Stage 0-

UNSW

UNSW

- 5: User familiarity with SHS varied
- Case Study 3: Stage 0: Initially skeptical that sunlight and wind could indeed be converted into electricity

Facilitators need to understand User position in the KPDAC continuum at project start to facilitate RE familiarity & build User autonomy

Environmental Markets Implementation/Delivery

User Autonomy: Technological Familiarity & the KPDAC Continuum

Generalization in facilitating technological capability:

The earlier the position of Users in the KPDAC continuum at project start, the greater the level of effort & length of intervention required to facilitate User technological capacity in RE

Centre f Environr

for Energy and mental Markets

UNSW

Delivery Model - Market Continuum

Case Study 1 - More commercial segment, Market model based on traditional practice: Cash & credit based on agreed negotiation
Case Study 2 - More commercial segment, Market model: WB loan, GEF 20% subsidy, 3 year credit period designed by project providers
Case Study 3 - Less commercial segment, Development model: Capital investment provided by donor/local government

UNSW

Accessibility: Equitable Access to PV Financial, Technological, Institutional Accessibility

Financial Accessibility:

• Case Study 1 – Second hand PV module transaction, flexible system configuration, flexible payment terms (made possible by Users high degree of familiarity with SHS)

• Case Study 2 – Market facilitation (formal market), support on the supply side to establish rural outlets, testing facilities, SHS standards

• Case Study 3 – Users pay OM service subscription, project was combined with rural economy empowerment programs (enhancing pre-existing economy)

Case Study 3: Combined program of PV delivery & empowerment of pre-existing rural economy in NTT improved Users economic standing & helped Users to pay PV service & installments regularly

PV Autonomy as a function of Financial & Technological capacities, viewed as a necessary condition for users to actively participate in the PV social system/network/orgware

Facilitators need to be aware of each rural community's economic standing & PV technological capability to promote User autonomy effectively

- Case Study 1: Most autonomous (investment & PV familiarity)
- Case Study 2: Semi to more autonomous
- Case Study 3: Least autonomous (require more actors & financial supports)

Availability Maintaining User Confidence in PV & Its Providers

UNSW

 Case Study 1: Local capable agent who can make business out of PV service availability (spare parts sales, electronic repair, battery maintenance); Users experience/innovation Case Study 2: Establishment of SHS standards, testing facilities & rural outlets • Case Study 3: Agreed rules of technician availability, spare parts and their prices

UNSW

Acceptability: PV Acculturation into Local Community's Life

- RE Acceptance/Acculturation: A measure of the extent to which RE can improve rural sustainability (solve local energy needs, promote local socioeconomic development)
- A function of Sustainable Implementation, Accessibility & Availability
- The nexus of PV attributes & local requirements: Relative advantage, compatibility, complexity, observability, reinvention etc.
 - PV Benefits: Saving from reduced kerosene use, greater comfort, reduced fire risk hazards, SSB & mobile phones charging
 - Issues: PV light too bright, PV's modularity provoked theft

Centre for Energy and Environmental Markets

UNSW

Acceptability: PV Acculturation into Local Community's Life

Reinvention: the degree to which an innovation is changed or modified by users in order to solve a wide range of user problems (not always favored but often inevitable)

- Reinvention: SHS w/o BCR
- Social innovation: SHS w/o BCR, use of PV to support swallow bird farming, to donate to the community, future possibility for solar-powered two-band radio

PV Acculturation into Local Community's Life

• The I3A Framework can illuminate the extent to which RE can facilitate sustainable development, considering the hardware, software & orgware aspects of RE delivery, both during and beyond project life

• The I3A Framework can be used both as an assessment & design tool for an RE project, by applying the following criteria:

Conclusions & Follow-Up

- Sustainable RE Implementation/Delivery: Promote civic network, facilitate active participation, build User autonomy/capacity
- RE Accessibility: Facilitate access to RE financing, skills, network
- RE Availability: Ensure RE availability both during & beyond project life
- RE Acceptability/Acculturation: Utilize & enhance pre-existing local resources
- Follow-up: an ADRA (Australian Development Research Award) project to identify & overcome barriers to RE in rural Indonesia by community capacity building using the I3A framework

The ADRA research project activities & timeline	2008 Workshop 1 Stakeholders Engagement Preliminary Site Visits Operationalize 13A Publications Annual Report 1	2009 Workshop 2 • Field Work & Apply I3A • Draft RE Best Practices • Draft RE Curricula • Publications • Annual Report 2	2010 • Workshop 3 • Obtain stakeholders feedback on RE Best Practices & Curricula • Publications • Annual Report 3	Final Report RE BEST Practices Project Guidelines RE Educational & Training Curricula Policy Recommendations Conference Papers, Journal, Books Follow-on Project Proposals: o RE Educational Program & o Rectification of failed RE past projects
				30

UNSW