

Smart Inverter Technology for High PV Penetration

Roland Bründlinger Senior Engineer AIT Austrian Institute of Technology, IEA-PVPS Task 14

International workshop on PV and the electricity grid Sydney, November 26, 2013

Contents

- Background Changing role of PV inverters
- Advanced functions of PV inverters
- Summary & recommendations

Contents

- Background Changing role of PV inverters
- Advanced functions of PV inverters
- Summary & recommendations

Integrating PV in the electricity grids Changing the role of PV

Traditional: Passive role of PV – no contribution to system operation

source: EPIA, based on SMA analysis, 2012

Features

- Feed-in of active power only → operation at unity power factor
- Rapid disconnection at over/under voltage/frequency with narrow window
- Anti-islanding as main concern ("disconnect at first sign of trouble")

Integrating PV in the electricity grids Changing the role of PV

Initial steps towards real integration: PV responding to system parameters

source: EPIA, based on SMA analysis, 2012

Additional features

- Active power reduction in case of over-frequency → ensure system stability
- Fault-Ride-Through (LVRT) capability (for larger units)
- Reactive power provision → limit voltage rise
- Limitation of active power feed-in during critical situations

Integrating PV in the electricity grids Changing the role of PV

With high penetration: PV actively supporting system operation

source: EPIA, based on SMA analysis, 2012

- Additional features
 - Remote control of set-points for active and reactive power
 - Communication of current production and schedule
 - Integration into Smart Grid operation

Contents

- Background Changing role of PV inverters
- Advanced functions of PV inverters
- Summary & recommendations

Overview of advanced grid support and PV inverter features

Reactive power control

- On demand, schedule or characteristics
- cos(phi) = f(P)
- cos(phi) = f(U) (optional)

Active power control

- Reduction of active power at over frequency
- Active power feed-in at under frequency

Grid management

- Temporary limitation of active power output at congestion in the grid
- Controlled on demand by grid operator

Dynamic grid support

- LVRT (Low Voltage Ride Through)
- Contribution to short-circuit current

Overview of advanced grid support and PV inverter features

Reactive power control

- On demand, schedule or characteristics
- cos(phi) = f(P)
- cos(phi) = f(U) (optional)

Active power control

- Reduction of active power at over frequency
- Active power feed-in at under frequency

Grid management

- Temporary limitation of active power output at congestion in the grid
- Controlled on demand by grid operator

Dynamic grid support

- LVRT (Low Voltage Ride Through)
- Contribution to short-circuit current

Advanced grid support features of PV inverters Reactive power: Basics and limitations

Load-reference arrow system/ consumer reference frame (CRF)

Advanced grid support features of PV inverters Reactive power: Operational requirements

CLC/FprTS 50549-2:2011

Requirements for the connection of generators above 16 A per

Connection to the MV distribution system

Advanced grid support features of PV inverters Reactive power control strategies

- Basic (local) reactive power control
 - $\cos \varphi = \text{constant}$
 - $cos\phi = f(P)$
 - $\mathbf{Q} = \mathbf{f}(\mathbf{U})$
 - $\mathbb{Q} = f(U,P)$
 - **.** . . .

- Coordinated control (requires communication)
 - $\cos \varphi = \text{remote setpoint}$
 - ...
- Selection criteria
 - Characteristics of the electric grid (impedance, angle...)
 - Grid losses
 - Available control and communications infrastructure

Advanced grid support features of PV inverters Reactive power control strategies: $cos\phi = f(P)$

 Requirement (default characteristics) according to German LV Code:

 Requirement (exemplary characteristics) according to German MV Code:

Advanced grid support features of PV inverters Reactive power control strategies: Q(U) and Q&P(U)

Currently being tested in high-penetration PV demo projects

Advanced grid support features of PV inverters Reactive power control: Specific aspects

- Reactive power balance issues with high PV penetration
 - Overall PF decreases due to PV feed-in (P goes down, Q demand of load remains constant)
 - Over-supply of reactive power during the night (low-load) in MV cable grids

Solution

- Provision of reactive power by PV also during nighttime
- Some PV inverters already offer necessary features

Overview of advanced grid support and PV inverter features

Reactive power control

- On demand, schedule or characteristics
- cos(phi) = f(P)
- cos(phi) = f(U) (optional)

Active power control

- Reduction of active power at over frequency
- Active power feed-in at under frequency

Grid management

- Temporary limitation of active power output at congestion in the grid
- Controlled on demand by grid operator

Dynamic grid support

- LVRT (Low Voltage Ride Through)
- Contribution to short-circuit current

Advanced grid support features of PV inverters Active power control/frequency control: Standard functions

- Reduction of active power at over-frequency
 Limited Frequency Sensitive Mode Overfrequency (LFSM-O)
 - With or without hysteresis

Active power feed-in at under-frequency

Advanced grid support features of PV inverters Active power control/frequency control: Extended functions

- Active power increase at under-frequency
 Limited Frequency Sensitive Mode Underfrequency (LFSM-U)
 - Available in combination with local storage

Source: ENTSO-E Network Code for Requirements for Grid Connection Applicable to all Generators

Source: Advanced Functions for DER Inverters

Modeled in IEC 61850-90-7

Overview of advanced grid support and PV inverter features

Reactive power control

- On demand, schedule or characteristics
- cos(phi) = f(P)
- cos(phi) = f(U) (optional)

Active power control

- Reduction of active power at over frequency
- Active power feed-in at under frequency

Grid management

- Temporary limitation of active power output at congestion in the grid
- Controlled on demand by grid operator

Dynamic grid support

- LVRT (Low Voltage Ride Through)
- Contribution to short-circuit current

Advanced grid support features of PV inverters Grid management

- Possibility for DSO to send setpoint values to generators
 - Reduce the active power output or change the cos(phi).
 - Guarantee grid stability in case of emergency situations or congestion

Advanced grid support features of PV inverters Grid management: Exemplary implementation

- Communication paths and protocols:
 - Audio or radio frequency ripple control
 - DNP3
 - IEC 60870-5-104
 - IEC 61850-90-7

www.fronius.com, Power Control Box

Overview of advanced grid support and PV inverter features

Reactive power control

- On demand, schedule or characteristics
- cos(phi) = f(P)
- cos(phi) = f(U) (optional)

Active power control

- Reduction of active power at over frequency
- Active power feed-in at under frequency

Grid management

- Temporary limitation of active power output at congestion in the grid
- Controlled on demand by grid operator

Dynamic grid support

- LVRT (Low Voltage Ride Through)
- Contribution to short-circuit current

Advanced grid support features of PV inverters Dynamic grid support: "LVRT Low Voltage Ride Through"

- Wide area voltage dips due to faults in the transmission grid
 - Threat: Simultaneous loss of several GW of PV (DR)
 - Possible wide area black-out due to lack of generation

Advanced grid support features of PV inverters Dynamic grid support: "Low/High Voltage Ride Through"

- Basic requirements
 - Remain connected to grid

Provide reactive current

Source: German Transmission Code

Contents

- Background Changing role of PV inverters
- Advanced functions of PV inverters
- Summary & recommendations

Smart PV inverters as key elements for the integration of high penetration PV

- Main challenges
 - Numbers and capacity of interconnected PV systems are increasing rapidly
 - PV and other DR challenge traditional power system management
- Opportunities
 - PV Inverters can be very powerful tools in managing the power system for reliability and efficiency
 - PV inverters are becoming quite "smart" and can perform autonomously
 - sense local conditions of voltage levels, frequency deviations and temperature,
 - receive commands and signals, which allow them to modify their active and reactive power output
- Providing access to these capabilities will be the key to improve system reliability and efficiency and enable further deployment of PV.

Thank you very much for your attention!

Roland Bründlinger
AIT Austrian Institute of Technology
Giefinggasse 2, 1210 Wien, Austria
roland.bruendlinger@ait.ac.at

