High PV penetration in the European context

Challenges – Threats – Opportunities*

Manoël Rekinger Senior Advisor – Electricity grid and markets

Part 01

State of play

"But the game is out there, and it's either play or get played" Omar Little – The Wire

PV, a risk for (fill in as appropriate)

"The stability of Europe's electricity generation is at risk from the warped market structure caused by skyrocketing renewable energy subsidies that have swarmed across the continent over the last decade."

Forbes

"The mechanisms required to compensate for intermittency can increase the cost of solar and wind energy many-fold, especially at higher penetration levels." The Energy Collective

"European industry is increasingly turning to the US to take advantage of cheaper energy (...) The current European model of promoting renewable energy regardless of the price and burden to public finances puts European economies in a clearly disadvantaged position."

OilPrice.com

"The CEOs of 10 utilities companies,(...) are calling for an end to subsidies for wind and solar energy, which they say add too much power to a market already struggling with overcapacity. (...) "European energy policy has run into the wall," GDF Suez CEO Gerard Mestrallet said." Furactiv

PV, the game changer ?

Source: Fraunhofer ISE , 2012

"The companies would have been in trouble anyway, whatever happened to renewables. During the 2000s, European utilities overinvested in generating capacity from fossil fuels, boosting it by 16% in Europe as a whole (...).The market for electricity did not grow by nearly that amount, even in good times; then the financial crisis hit demand"

The Economist: "How to lose half a trillion Euros"

"Solar is growing so fast it is going to overtake everything"

"Our markets were made up for a very centralised system, very large plants and plants that were distant from loads. We're moving to a much more distributed system that also has consumers participating as resources with their load."

Jon Wellinghoff, chairman of the US Federal Energy Regulatory Commission (FERC)

"Now, if you're a utility company, you're going to be very worried about that. (...) So I've been telling them there's another business model."

Stephen Chu, former US Energy Secretary(Source: Reneweconomy)

Part 02

Current status and trends

"I think there is a world market for maybe five computers" Attributed to Thomas Watson – CEO of IBM in 1943

PV in Europe

European PV market segmentation in 2012 (%)

Net generation capacity added in the EU 27 2000-2012 (GW)

Source: EPIA, "Global Market Outlook for Photovoltaics 2013-2017", 2013

Europe main markets in 2013

Market trends for next years...

- Most likely to stabilise in Key markets
 - → No other EU markets likely to take it over
- Self-consumption, the new main driver
 - → Future of electricity tariffs will be crucial !
- Trend to integrate PV in the Emarket
 - → Redesign is needed
- Very large systems do not have a (short ?) future in Europe anymore

Non- European Markets in 2013

Part 03

On the road to high PV penetration

"You and I come by road or rail, but economists travel on infrastructure" Margaret Thatcher

EPIA's visions for 2020 and 2030 in EU (MW)

Challenges, solutions and collaborations

IEA PVPS Task 14

Mapping the challenges: PV integration Costs

PVPARI From 2% to 15 % penetration level

→ 2012 to 2030

- Worst case scenario
 - → No modification of the current practices
 - But cost below €26/MWh in 2030
 - → 20% savings with DR
 - → Depends on the correlation between peaks
- Order of magnitude:
 - 1. Generation Adequacy
 - 2. Distribution grid costs
 - 3. Transmission grid costs
 - 4. Balancing costs

Part

Transmission level

"Size does matter" Godzilla

10

9

8

7 6

5

4

3

2

0

Belgium

Creat Republic

Bulgaria

Pay attention to instantaneous power

Δ

dena Germany (average; up and

Annual average and maximum instantaneous PV contribution to electricity consumption in 2012 (%)

PV average contribution to electricity consumption in 2012 (left axis)

PV maximum instantaneous contribution to electricity consumption in 2012 (right axis)

Source: Eirgrid and Soni, 2010 and IEA WIND Task 25, 2011

Ancillary services provision: functionalities

Type of		ĸ	¥	~	æ	5	
functionality	Functionality name	ŭ	Ξ.	2	÷.	2	
Tochnical	Active Rewer Centrel	×	v	v		×	
recinical	Active Power Control	×	~	×		~	
	Active Power Delta Control Mode	Ŷ	Ŷ	Ŷ		v	
	Active Power Limitation Control Mode	~	~	~		~	
	Frequency Sensing	Ŷ	Ŷ	^	×	^	
	Frequency Sensitivity Mode (or Droop Control)	Ŷ	v		^		
	Active Power Setsoint Processing	x	x	x	¥	×	
	Setnoint Priority Management	x	x	x	x	x	
	Temporary Active Power Increase	^	~	~	x	^	
	Temporary Active Fower Increase				~		
Operational	Ability to Calculate Actual Active Power Production	x	x				
operational	Power production forecast	~	x	х		х	
	Communication and Control Interface	х	x	x	х	x	
	Communication and Control Interface with the SO	X	х	Х	х	х	
Type of						ž	
functionality	Functionality name					ŝ	
Technical	Reactive Power Setpoint Processing					X	
	Reactive Power Control Scheme					х	
	Reactive Power Control					Х	
	Voltage Control					Х	
	Power Factor Control					Х	
	Reactive Power Provision					х	
	Fast Possitive Sequence Reactive Current Injection	on Ca	apab	oility	1		
	Fast Active Current Reduction Capability						
	Fast Negative Sequence Current Provision						

Source: Eneginet.dk, 2010

Moving the discussion to the portfolio level

Reserve provision by PV portfolios

Source: 3E, 2013

Iberia study case

Source: VTT, 2013

- WILMAR Unit Commitment and dispatch model
- Iberian system modeled on a unit basis
- High instantenous wind and PV \rightarrow 28.5 % wind and 13.7 % PV
- Analysis of a 1 GW unit trip

No Wind/PV

Thermal: 237 MW Hydro: 802.5 MW

Limited Wind 1s and PV 0.5s

Wind:	300 MW
PV:	300 MW
Thermal:	67.8 MW

Part 05

Distribution level

"Small is beautifull" Leopold Kohr - Economist and philosophical anarchist

You are not alone (Time is money)

Distribution Collection grids

Source: Enel Distribuzione, 2013

German PV-Storage program

Grid-optimized storage

- Study of BSW / Fraunhofer ISE:
 - → Power peaks can be reduced by 40% without curtailment
 - ➔ Increase of up to 66% of the hosting capacity
- Requirements and technical prerequisites to be financed:
 - → Grid supporting operation
 - → new PV system or retrofit to solar PV system
 - → PV system cap of 30 kWp
 - → Effective power reduction to 60%
- 8000 systems financed in 2013

Source: BSW, 2013

Voltage control in LV grids

- Real LV grid in Bavaria (0.4kV /3-phase)
- Feeder configuration: radial
- Installed DER capacity: 417 kW (100% PV)
- Residential households: 88
- PV penetration (Installed PV capacity over peak load): 3.6
- MV/LV transformer: 0.4 MVA (no OLTC installed)

Doubling the hosting capacity ?

Source: Fraunhofer IWES, 2013

From the simulations to the real world...

Effectiveness of solutions	Technical solution	cz	DE	ES	іт	•
	Curtailment of power feed-in at PCC					
	Network Reinforcement					
	Reactive power control by PV inverter Q(U) Q(P)					
HIGH EFFECTIVENESS	Active power control by PV inverter P(U)					•
	Prosumer storage					
	On Load Tap Changer for MV/LV transformer					
	SCADA + direct load control					•
	Network Reconfiguration					
	Self-consumption by tariff incentives					
	Wide area voltage control					•
NORMAL EFFECTIVENESS	Static VAr Control					
	Booster Transformer					
	SCADA + PV inverter control (Q and P)					
	DSO storage					

- Rules forbidding **RES energy** curtailment except for security issues
- Insufficient DSO access to advanced PV capabilities
- Insufficient Framework for **DSO** Storage
- Regulatory frameworks that do not incentivize "Smart Grid"

Part 06

Conclusions

"Don't worry about the world coming to an end today. It is already tomorrow in Australia." Charles M. Schulz - American cartoonist

High PV penetration: how to get there ?

More an economical/regulatory question rathe than a techical one

• *PV integration is entirely feasible, but adjustments are needed*

There is a need to define the role and responsibilities of each actors

• A 4 variables optimisation : Markets VS DSOs Vs TSOs Vs PV owners

New focus on the distribution level

- Need for aggregation
- *Need for new metering and communication strategies*
- Standardisation of components and protocols is a must !

Empowering the consumer/prosumer

- New business models for PV
- Development of re(al)tail markets

THANK YOUR FOR YOUR ATTENTION

You can download this presentation on : http://www.iea-ovps.or

This document was presented by

Manoël Rekinger: m.rekinger@epia.org

European Photovoltaic Industry Association Renewable Energy House Rue d'Arlon 63-67, 1040 Brussels - Belgium T +32 (0)2 465 38 84 - F +32 (0)2 400 10 10 info@epia.org - www.epia.org

Market segmentation in Europe

European PV cumulative capacity segmentation by country in 2012 (%)

Source: EPIA, "Global Market Outlook for Photovoltaics 2013-2017", 2013

New Wind and PV are competitive

