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Abstract

Growing concerns over climate change and the security of electricity supply due to uncertaintiesfurefqadles

and their availability have contributed to the rapid growth of renewable generation over recent decades. Solar
photovoltaic (PV) in particular has achieved significant growth given its rapid technology progress and price
reductions in recent years. Bhpaper uses a probabilistic generation portfolio modelling tool to assess the value and
impacts of high PV penetration in future electricity generation portfolios under multiple policy objectives including
generation costs, associated cost risks ang é@@sions given a range of future uncertainties. The modelling tool
employs Monte Carlo simulation techniques to formally incorporate uncertainty inffesdsprice, carbon price,

plant capital costs and electricity demand when determining generatioofamsth possible generation portfolio.
Generation portfolio analysis with the efficient frontier technique is then employed to assess tradeoffs among key
objectives for different generating plant portfolios. The tool is applied to a case study of thaidwdtational
Electricity Market (NEM) with five generation options: brown coal, black coal, combined cycle gas turbine (CCGT),
open cycle gas turbine (OCGT) atatgescale solaPV. Hourly PV generations across different locations were
simulated for dferent penetration levels based on the actual hourly weather and demand data. Results show that the
value of PV in generation portfolios depends largely on the level of future carbon price. Without a carbon price,
increasing PV penetration would increake overall generation cost. However, with a modest carbon price, PV
generation can help reducing the overall generation costs in addition to cost risks and greenhouse gas emissions. The
study provides insights into a number of important issues partigulalrole of PV in addressing the challenges
faced by the electricity industry. In addition, the results can be used for assessing specific future generation
portfolios that of particular interests to utilities and polingkers.

1. Introduction

Many eletricity industries worldwide face increasing challenges associated with often rapid yet highly uncertain
demand growth, energy security concerns and environmental sustainability. Electricity demand is typically driven by
economic growth and the recent ueton in demand growth following the Global Financial Crisis has raised doubts

on the future prospect of many economies. There is also energy security concern associated with high dependence on
fossiluels given their future availability and pricing hdyecome increasingly uncertain over recent decades. Coal

and gas are the primary fuels for the global electricity industry, both of which have experienced increasing volatility
and underlying price growth over the last decéidd, 201]). In addition, growing international concerns over

climate change have emerged as a new challenge given the significant contribution of the electricity mdustry t
global greenhouse gas emissions. Efforts by many countries in addressing climate change have often been based
around establishing an environment al externality 6écarb
contributed to the rapid gmih of emerging renewable energy (RE) technologies particularly wind and solar power
over recent decades.

Solar PV is one of the fastest growing RE technologies worldwide during the past few years due to rapid
technological progress and dramatic costideslPV haslow operating costs and zero carbon emissions. It does not
rely on fossil fuels which potentially present a range of energy security concerns. In addition, PV generation outputs
are highly correlated with daytime peak electricity demand eslhecuring summer months in many countries.
Despite its advantageBY still makes only a modest contribution to global electricity supply. Relatively high capital
costs and investment risk compared with some convaltgeneration technologies wehe main barrier to a wide

spread of solar generation technolog{€eoscience Australia, 201&ingh andSingh, 201). Although arbon

pricing has beerviewed as one of the critical factors in driving future generation investment towREls
technologies such as Pthere isstill continuing uncertainty surrounding tlenger term impacts of climate change
policies and théevel of future carbon prickkely to be required to deliver effective action on climate chaAdeey

policy questionthen, is what rolenight PV play in future generation portfolios in addressihg economic, energy
security and envimmental challenges facirgectricity irdustries around the worldPV technology offers a new
alternative for generation investment but also bring new complexities to analysis due to its unique technical and
economic characteristics.
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Generation investrme and planning decisiemaking is often influenced by diverse and potentially conflicting
criteria involving generation costs, associated cost risks and greenhouse gas emissions. However, the nature of the
potential tradeoffs and synergies among thesteri@i are invariably complex and somewhat context specific.
Generation investment and planning criteria is, therefore, increasingly moving beyond minimising generation costs to
meet demand towards more complex assessments incorporating risks and uesestaingd wide range of industry
objectives.

This studyis intended to provide quantitative analysis and insights into the future role and potential value- of large
scale PV in the electricity industry under future uncertainty and multiple industry ebfedti the context of the
Australian National Electricity Market (NEM). The study employs a probabilistic generation portfolio modelling tool
developed inVithayasrichareon and MacGill, 2002 analyse future generation portfolios with lasgale solar

PV under a range of potential future uncertainties including fasdilprices, carbon jming policy, electricity

demand and plant capital costs. The tool has previously been applied to number of case studies; for example the
study on thepotentialimpact and valueof high wind penetrationin the NEM(Vithayasrichareon and MacGill,

2013. However, this pagr represents its first application to PV

2. Probabilistic Generation Portfolio Modelling Tool

The modelling tool employed in this paper is a simulation based tool that can assess future generation portfolios with

PV against multiple objectives given ange of potential future uncertainties. The tool adopts a-ferg societal

perspective and thus concentrates on overall future indwidey outcomes for different electricity generation

portfolios. The modelling tool extends the load duration curve (LBe3ed optimal generation mix techniques by

using Monte Carlo simulation (MCS) to formally incorporate key uncertainties which directly impact overall
generation costs into the assessment. Outputs from the tool are the complete range of individuainsirofilati

annual generation costs and £@missions for each possible generation portfolio, which can, therefore, be
represented by a series of probabil ity , eénmissidng forbaut i ons.
particular portfolio representhe average of all these silated generation costnd CQ emissionsfrom every

Monte Carlo run for a single year in the future. The cost spread for a generation portfolio is denoted by the standard
deviation (SD), which rredriess erndfse rarses cti at &g ' Thectasstt un sekr
then applies portfolio analysis techniques to determine theriskgtfficient frontier (EFY by mapping the expected

generation cost and cost uncertainty for different generation postiolithe valugisk space. Generation portfolios

that are not on the EF are consideredlogtimal in terms of cogisk. Such techniques provide a basis for analysing

cost and risk tradeoffs among different generation technology portfolios.

Inputs intothe tool consist of economic and operating parameters of each generation option as well as probability
distributions of key uncertain parameters which are fdssll prices, carbon price, hourly electricigmand and

plant capital costdDemand is represted by a Load Duration Curve (LDC) where estimated hourly demand over a
year is arranged in descending order of magnitéde.each Monte Carlo run, the total annual generation cost of
each generation portfolio consists of total annual fixed costs arableacosts. The annual fixed cost is determined
based on the installed generation capacity of each technology in the portfolio. The fixed cost is made up of
annualised plant capital cost, fixed operation & maintenance (O&M) and annualised costs ahgpgradilding

new transmission networks to accommodate such portfdhe. annual variable cost of generation portfolio is
calculated based on annual energy (MWh) generated by each technology in the portfolio giverTad_Z&iable

cost comprises vable O&M, fuel costs and carbon costs. The generation output of each technology in the portfolio
in each period of the LDC is determined using simulated partial economic dispatch with the objective to minimise
operating costs subjected to demand and chpaoinstraints. Note that transmission and other possible- inter
temporal operating constraints such as ramp rates and minimum operating levels of generating units are not taken
into consideration. Total annual G@missions of generation portfolios arectddted from the annual energy and
emission intensity of each technology

In the tool, RE generatios such as PV are given the first priority in the dispatch as they can offset the need to
dispatch fossifuel generation. With this assumption, the actaalsimulated hourly renewable generation is

! Since the tool applies MCS techniques which can incorporate virtually any type of input probability distribution, it oain supp
sophisticated risk assessments including for example downside economic risks and other forrmweidiriski uncertainty
measures that suit particular risk preferences as shoWithayasrichaeon and MacGill, 2019aThis paper, however, only
focuses on standard deviation as a measure of cost risk.

2 The efficient frontier concept is used in the Mean Variance Portfolio (MVP) theory for financial portfolio optimisation
(Markowitz, 1952. It has been increasing applied to future generation portfolio planning frame\er&ebuch, 2005

% Modifications of his EF approach can also be used to highlight other potential tradeoffs between different generation portfolios
such as their expected overall costs versug&dssions as demonstrated Wfithayasrichareon anillacGill, 20128).
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subtracted from hourly demand over a year. The resulting residual (net) demand, after accourRErggefaration,

is then rearranged in descending order of magnitude to obtain a residual load duration cD@g (Riich is to be

served by conventional technologies in the portfolio. This technique has been widely in generation planning
frameworks(Denholm and Margolis, ZI¥; Delarue et al., 20)1

3. The Australian National Electricity Market (NEM) Case Study

This paper considers a case study of the Australian National Electricity Market (NEM) that faces highgiruncer
future fuel prices, carbon prices, electricity demand andméld plant capital costs. It is assumed that there are

five generation options: brown coal, black coal, combined cycle gas turbine (CCGT), open cycle gas turbine
(OCGT) and PV. Hourly eledcity demand and PV generation are the actual and simulated data for the NEM in
2010. The year 2010 was chosen since weather records for this year are largely complete, and therefore would
provide relatively accurate simulations of hourly PV generatmoss different locations in the NEM. Generator
characteristics and cost parameters used for the simulations are based on the 2030 cost estimates obtained from the
Australian Energy Technology Assessment (AETA) report by the Bureau of Resources and Eawergmics

(BREE) (BREE, 2012. Transmission costs were estimated from the National Transmission Network Development
Plan (NTNDP) by the Australian Energy Market Operator (AEM®EMO, 20113. Different PV penetrations

from 0% to 25% are simulated for all pidle thermal generating plant portfolios. Each input parameter for this
specific case study is described in the following subsections. These inputs include demand and PV generation,
transmission cost estimates, generator data and the stochastic magedertdin fuel and carbon prices, demand

and newbuild plant capital costs.

3.1 Hourly electricity demand and solar PV modelling

Hourly demand for the NEM in 2010 was obtained by aggregating actuahichalfy demand data for each state
provided by AEMO ad averaging them into aggregate hourly val(&EMO, 2010Q. Twelve locations comprising

of major cities and regional locations in each state of the NEM were selected to model hourly PV generation for
2010. By modelling PV plastin both cities and regional locations, the diversity value of PV plants across different
locations in the NEM can be capturdélg. 1 shows a map of the selected sites for lasgle ®/ plants for the
simulation where the red symbols indicate major cities while the blue symbols indicate regional locations.

For the major cities, it is assumed there is no requirement for building new
or upgrading existing networks to accommodate highpeketrations. On
the other hand, centralised PV plants in the selected regional sites would
require new transmission lines or network augmentations. Hence, additional
transmission costs associated with centralised PV plants in these regional
locations arealso taken intaonsiderationSystem Advisor Model (SAM)
T software was used to model hourly PV generation outputs in 2010 for the
Long Reach selected locations. SAM is a tool developed by the National Renewable
% Energy Laboratory (NREL) to model the performance anst o6 grid
Datby @' connected renewable generation technologies, with a particular focus on
~ solar technologie$NREL, 2013. Using hourlyweather data for a given

Australia

P, @ N location, SAM estimates hourly electricity generation output for any
3 U selected solar technology systenihe hourly PV generation in each
Q, @ @?} location was modelled based on MW fixed flat plate solar PV plant,
A with northfacing arrgs and tilted at latitude angle. The hourly PV
Qo generation is scat up for a desired Ppenetration level.

Melbourne

Fig. 1. Locations of PV plants for the simulation.

This study considers 0%5% PV penetration levels in 5% increments arsliiasng the same installed PV capacity

for each of the selected locatiodg. 2 illustrates the simulated hourly PV generation for all the selected locations

at 20% PV energy penetration as well as the actual MBily electricity demand in 201®lourly simulated PV
generation was subtracted from the demand to obtain a residual demand profile which was then rearranged to obtain
a Residual Load Duration Curve (RLD@hich is to be served by thermal generationnetigies The RLDCs for

different PV penetrations are shownHig. 3. The figureshows that the RLDCs drop sharply after the top 70% for

high PV penetrations. This is because higher PV penetration would onlpsecdaytime PV outputs while the
outputs during any other times are still zero. Therefore, the contribution of PV plants in reducing high demand on
winter evenings is rather limited. This study assumes that PV plants always generate when 4vailable.

*In practice, minimum operatirigvels, startup timeand ramp rate limits for thermal plants might necessitate curtailments.
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Fig. 2. NEM hourly demand and simulated PV generation at 20% penetration in 2010.
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Fig. 3. Residual load duration curves for different PV penetrations.
3.2 Generator data

New entrant generation data for each tetbgy were obtained from the 2012 AETA report based on the 2030 cost
estimategBREE, 2012. Annualised capital costs for each technology are determined using a 5% discount rate.

Tablel: Generator data

Parameters Technology
Brown Black CCGT OCGT Solar PV
Coal coal
Plant life (years) 50 50 40 30 30
Typical size (MW) 750 750 386 564 100
Capital cost ($million/MW) 3.8 3.0 1.1 0.8 1.6
Fixed O&M ($/MW/yr) 60,500 50,500 10,000 4,000 25,000
Variable O&M ($/MWh) 8 7 4 10 0*
Thermal Hficiency (%) 32.3 41.9 49.5 35 N/A
Heat Rate (GJ/MWh) 11.144 8.591 7.272 10.285 N/A
Emission factor tCgMWh) 1.024 0.773 0.368 0515 O

Remark: *Variable O&M cost for PV has been accounted for in fixed O&M cost.

3.3 Transmission cost estimates

Thestudy assumes new transmission lines would be required for PV plants in the selected regional areas while those
in the major cities do not require new networks or upgrades of exisimgrks. Associated transmission costs for
centralised PV plants in thegienal sites are determined based on their distances to the nearest load centres or major
transmission hubs, maximum PV outputs and indicative transmission cost estimates provided byASHBAD

20113. Transmission cost estimate for high voltage AC lineslus this study is $700/MW/km. Total associated
transmission cost for each regional location is determined for each case of PV penetration level. Annualised
transmission cost is calculated assuming economic lifetime of transmission line is 50 yea%@did@unt rate.

3.4 Modelling uncertainties

This study considers key cost parameters to be highly uncertain, which is a reasonable assumption given the future
cost estimates are used. These parameters include fuel prices carbon price and plant stapitalacilition, the

4



electricity demand is assumed to be uncerfairel prices and capital cost uncertainties were modelled based on the
percentage uncertainty of these costs. Demand uncertainty was modelled as the uncertainties in the RLDC for each
PV penetration.Fuel prices, carbon price and capital cost uncertainties are modelled by lognormal distributions to
reflect the asymmetric downside risk of such costs which demand uncertainty is modelled by a normal distribution.
Both types of distributions cabe characterised by mean (expected value) and standard deviation (SD). The expected
fuel prices and plant capital costs were obtained from the 2030 estimates for the NEM while their SDs were
estimated from the percentage uncertainty for fuel prices apithtcosts provided i(BREE, 2012.

The number of simulations is set at 10,000 each of which consists of a set of sample fuel and carbon prices, plant
capital costs and RLDC. These 10,000 set of simulated fuel and carbon prices, capital costs anar&LB&sfor
calculating the annual generation costs and emissions for each possible generation portfolio considered.

3.4.1 Modelling fuel price and carbon price uncertainties

SDs of brown coal, black coal and natural gas price were estimated to be%3%d&0% of their expected values
respectivelyTable2 summarises the expected fuel prices and their SDs for each fuel type.

Table2: Expected price and SD for each fuel type
Fuel price($/GJ)

Brown Black Natural
coal coal gas
Mean 0.5 1.65 8
SD 0.15 0.1 2.4

Correlations among fuel and carbon prices are also taken into account when modelling these uncertainties. This is a
particularly important aspect given that the movementasf, goal and carbon prices has exhibited considerable
correlations as evidenced in EU and UK market. Such correlations have been demonstrated to influence the impact
of uncertainty(Awerbuch and Yang, 2008&/ithayasrichareon, 20)2The correlation coefficients among fuel and
carbon prices used in this study are showmable3. These values were estimated from historical trends in OECD
countries and a number of previous stut{esA, 2012).

Table3: Correlation coefficients among fuel and carbon prices.

Brown coal & Coal & Gas & Coal & carbon
Black coal price  gas price carbon price  price
0.95 0.6 0.45 -0.35

Multivariate Monte Carlo simulation technique is used to generate correlated samples of brown coal, black coal, gas
and carbon pricésHistograms of correlated fuel and carbon @siover 10,000 MCS runs for a 82CO, scenario

based on the mean, SD and correlation values Trabte 2 andTable3 are shown irFig. 4. Scatter plots of 10,000
correlated samples are also shown in the figure highlighting the correlations among fuel and carbon prices.
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5 Although the correlation coefficients are not necessarily applicable to the actual fuel supply situgti@rNEM, they do
highlight the importance of considering such factors in generation investment and planning.
5 Multivariate simulation technique is used for reproducing random samples of uncertain parameters while preserving their
respective marginal disbution properties and correlation structure.
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3.4.2 Modelling capital cost uncertainty

SDs of the capital costs of brown coal, black coal CCGT, OCGT and PV plants were estimated to be 36%, 41%,
28%, 30% and 60% of their expected values respectively. The expected capital costs and SDs fdinedatpytec
used in the simulation are showriTiable4.

Table4: Expected capital cost and SD for each generation technology

Capital cost ($million/MW)
Brown Black CCGT OCGT PV
coal coal
Mean 3.8 3 11 0.8 1.6
SD (value) 1.36 1.2 0.32 0.23 0.94

3.4.3 Modelling electricity demand uncertainty

Demand uncertainty is modietl by assuming a normal distribution of residual peak demand (peak demand RLDC)

for each PV penetration. The SD ofresiduapeak demand is estimated based on ¢
exceedenced (POE) provided by AEMO which indicate the
projections(AEMO, 2011h. The POE projections are useddetermine the SD of the expected peak demand,

which is approximately 4% of the expected vake: each PV penetration, each random RLDC is derived from each

sample of residual peak demand. The difference between a random residual peak demand anctedeperie

demand is then used to adjust the demand in every period of the expected RLDC to obtain a random RLDC for each

PV penetration. The uncertainty in the RLDC is therefore nhededs vertical shifts in the expected RLDC thus
maintaining the same sba and steepness. Such concept is illustratdeign5, which shows the histograms of

10,000 residual peak demand and random RLDCs for 5% and 20% PV penetildienesare some periods when

the simulated residual demand exceetledinstalled generation capacity. The costs of energy not served in those

periods are included in the calculation of the overall generation cost during each Monte Carlo runud@lad val

energy not served used is $a@)/MWh, which corresponds to the spoarket price cap in the NEM
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Fig. 5. Histograms of peak demand and associated RLDCs oy@®Q.8imulations for 5% and 20% PV

4. Simulation Results

The overall yearly generation costs and,@missions of every generation porifolwere calculated for 10,000
simulated future fuel and carbon prices, demand and plant capital costs. The portfolio costs and emissions during
each Monte Carlo run (each set of uncertain parameters) were determined based on the installed capaciy and annu
energy generated by each technology in the portfolibe expected cost and G@missions of each generation
portfolio are the average values of costs and emissions over the 10,000 Monte Carlo runs. SD of generation costs, as
well as higher statisticainoments, of the cost distributions can be determined since the results provide a full
spectrum of possible generation costs of each portfolio. Hence the results can be used to analyse the downside risks
of generation portfolios, which indicated by the miagde of rare but high cost outcomes. This is particular
importance given that the distributions of energy commodity prices have been frequently observed to exhibit major
deviations from normality due to their asymmetry and tail fatiEgdeland and Wolyniec, 20D3However, aly

SD as a measure ofstarisk is considered in this paper.

” Note that, a change in merit order dispatch can occur during each Monte Carlo run. For example, a particular set of uncertain
parameters may produce low gas price, high coal and carbon prices which r&3@iBinto have the lowest variable costs
compared with the other technologies.
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4.1 Portfolio expected cost, cost uncertainty and CO, emissions

Fig. 6 uses a scenario of an expected carbon price of $29M6how the expected costs, cost uncertainty and
expected CQ@emissions of different thermal generation portfolios for 5% and 20% PV penetrations. Expected cost
and CQ emissions of each generation portfolio are plotted against its SD, which represents cost urft@tiainty.
circles represent the expectegneration costs while the G@missions of the corresponding portfolios are
represented by the asterisks in the same vertical plane. The efficient frontiis (&fwn by the solid line.

The portfolio expected cost, cost uncertainty and emissiarsgehfor different PV penetration. As illustrated in the
figure, for an expected carbon price of $20/4CBigher PV penetration would appear to increase the portfolio
expected costs and cost uncertainties. However, greater PV penetration would recharéfdle expected C®
emissions. In the examples shown in

Fig. 6, the technology mixes in the optimal generation portfolios on the EF change slightly for different PV
penetrations. The optimal portfolios changani portfoliosA, B, C, D andE for the case of 5% PV to portfolids

C, F andG for the case of 20% PV.
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Fig. 6. Expected cost, cost uncertainty and,@missions of the thermal generation portfolios for an explecarbon price of
$20/tCQ with 5% PV penetratiofleft) and 20% PV penetratidnight).

4.2 The impact of carbon pricing and different PV penetrations

The frontiers showing cosisk tradeoffs among optimal generation portfolios for different expeaéabao prices

and PV penetrations are shownrFig. 7. For a low carbon price (i.e. $20/tg&s shown on the left graph Big. 7,

higher PV penetratiarincrease overalhidustrycosts and cost risks indicated by the upward movements of the EF

as PVincreasesWith a low carbon price, the optimalonventional generatioportfolios consist mainly of brown

andor black coal. For higher carbon pr&g.e. from $50/tCGO;), however, it is possible fathe overallindustrycosts

and associated cost risks to fall as PV penetration incrdagbs case the EFs are shifted diagonally downwards as

the PV penetrations increases implying lower industry costs and associated eostiniies.The reason is that PV

reduces fossil fuel consumption and emissions, and hence the impacts of uncertain fossil fuel and carbon prices. For
high carbon prices, the optimal mix of conventional generation changes as PV penetration inorqzstsular,

away from coal and towards gas generation.

8 Note that not every generation portfolio in the simulation is presented on the graphs to aid clarity. Except for thdSE,on the
only generation portfolios with 20% incremertda technology shares are shown. Furthermore, portfolios which have high
expected cost and cost uncertainty were omitted in order to expand the resolutions of the axes.

® Efficient Frontier (EF) represents the lowest possible expected costs and costintyceedeoffs. Along the EF, the overall
expected costs can only be reduced by accepting higher cost uncertainties among the portfolios.
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Fig. 7. EF containing optimal generation portfolios for different PV penetrations for different expected carbon prices.

Fig. 8 shows tlat portfolio generation costgenerally increase with increased PV penetration for a rahgarbon
prices. However, theost increass become smalleas carbon price increasastil atafit hr eshol do
where the portfoliccosts are the same fanyPV penetratioevel. Beyond the threshold carbon price, the portfolio

car boi

expected costs would begin to fall as PV increashs. higher the carbon price, the more cost reductions can be

achieved wth a higher share of PVThe level of threshold carborrige is influenced by the share of géesed

generation.Portfolios with high proportions of combined brown and black coal would require higher threshold
carbon price compared with those that comprise mostly of CCGT and/or OCGT.

Fig. 8. Expected portfolio costs for different carbon prices and PV penetrations for sected¢hermal generation poltifus.

This impact appears to depend largely on the proportion of fixed and variable costs in the portfolios. Portfolios with
a majorty of CCGT and/or OCGT have high proportion of variable costs compared to their fixed costs while it is
vice verso for those that comprises mainly of brown and/or black coal. Therefore, the reduction in variable costs for
gasdominated generation portfoonvould exceed the increase in fixed costs resulting in a reduction of the overall

generation costs.

5. Conclusions

The results show that PV generation can play a valuable role in hedging against uncertain futdtelfpssibs

and carbon pricing polies which subsequently reduce the risk of generation portfolios. The paper also illustrates

that increasing the share of PV generation would reduce the overakr@i€sions. More importantly, the results

suggest that the imposition of a sufficient carlpsite would enhance the economic value and encourage more
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