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Abstract 

Growing concerns over climate change and the security of electricity supply due to uncertainties in fossil-fuel prices 

and their availability have contributed to the rapid growth of renewable generation over recent decades. Solar 

photovoltaic (PV) in particular has achieved significant growth given its rapid technology progress and price 

reductions in recent years. This paper uses a probabilistic generation portfolio modelling tool to assess the value and 

impacts of high PV penetration in future electricity generation portfolios under multiple policy objectives including 

generation costs, associated cost risks and CO2 emissions given a range of future uncertainties. The modelling tool 

employs Monte Carlo simulation techniques to formally incorporate uncertainty in fossil-fuel price, carbon price, 

plant capital costs and electricity demand when determining generation cost of each possible generation portfolio. 

Generation portfolio analysis with the efficient frontier technique is then employed to assess tradeoffs among key 

objectives for different generating plant portfolios. The tool is applied to a case study of the Australian National 

Electricity Market (NEM) with five generation options: brown coal, black coal, combined cycle gas turbine (CCGT), 

open cycle gas turbine (OCGT) and large-scale solar PV. Hourly PV generations across different locations were 

simulated for different penetration levels based on the actual hourly weather and demand data. Results show that the 

value of PV in generation portfolios depends largely on the level of future carbon price. Without a carbon price, 

increasing PV penetration would increase the overall generation cost. However, with a modest carbon price, PV 

generation can help reducing the overall generation costs in addition to cost risks and greenhouse gas emissions. The 

study provides insights into a number of important issues particularly the role of PV in addressing the challenges 

faced by the electricity industry. In addition, the results can be used for assessing specific future generation 

portfolios that of particular interests to utilities and policy-makers.  

1. Introduction 

Many electricity industries worldwide face increasing challenges associated with often rapid yet highly uncertain 

demand growth, energy security concerns and environmental sustainability. Electricity demand is typically driven by 

economic growth and the recent reduction in demand growth following the Global Financial Crisis has raised doubts 

on the future prospect of many economies. There is also energy security concern associated with high dependence on 

fossil-fuels given their future availability and pricing have become increasingly uncertain over recent decades. Coal 

and gas are the primary fuels for the global electricity industry, both of which have experienced increasing volatility 

and underlying price growth over the last decade (IEA, 2011). In addition, growing international concerns over 

climate change have emerged as a new challenge given the significant contribution of the electricity industry to 

global greenhouse gas emissions. Efforts by many countries in addressing climate change have often been based 

around establishing an environmental externality ócarbon priceô on greenhouse gas emissions. These factors have all 

contributed to the rapid growth of emerging renewable energy (RE) technologies particularly wind and solar power 

over recent decades. 

 

Solar PV is one of the fastest growing RE technologies worldwide during the past few years due to rapid 

technological progress and dramatic cost declines. PV has low operating costs and zero carbon emissions. It does not 

rely on fossil fuels which potentially present a range of energy security concerns. In addition, PV generation outputs 

are highly correlated with daytime peak electricity demand especially during summer months in many countries. 

Despite its advantages, PV still makes only a modest contribution to global electricity supply. Relatively high capital 

costs and investment risk compared with some conventional generation technologies were the main barrier to a wide 

spread of solar generation technologies (Geoscience Australia, 2010; Singh and Singh, 2010). Although carbon 

pricing has been viewed as one of the critical factors in driving future generation investment towards RE 

technologies such as PV, there is still continuing uncertainty surrounding the longer term impacts of climate change 

policies and the level of future carbon price likely to be required to deliver effective action on climate change. A key 

policy question, then, is what role might PV play in future generation portfolios in addressing the economic, energy 

security and environmental challenges facing electricity industries around the world. PV technology offers a new 

alternative for generation investment but also bring new complexities to analysis due to its unique technical and 

economic characteristics.  
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Generation investment and planning decision-making is often influenced by diverse and potentially conflicting 

criteria involving generation costs, associated cost risks and greenhouse gas emissions. However, the nature of the 

potential tradeoffs and synergies among these criteria are invariably complex and somewhat context specific. 

Generation investment and planning criteria is, therefore, increasingly moving beyond minimising generation costs to 

meet demand towards more complex assessments incorporating risks and uncertainties and a wide range of industry 

objectives. 

 

This study is intended to provide quantitative analysis and insights into the future role and potential value of large-

scale PV in the electricity industry under future uncertainty and multiple industry objectives in the context of the 

Australian National Electricity Market (NEM). The study employs a probabilistic generation portfolio modelling tool 

developed in (Vithayasrichareon and MacGill, 2012a) to analyse future generation portfolios with large-scale solar 

PV under a range of potential future uncertainties including fossil-fuel prices, carbon pricing policy, electricity 

demand and plant capital costs. The tool has previously been applied to number of case studies; for example the 

study on the potential impacts and value of high wind penetrations in the NEM (Vithayasrichareon and MacGill, 

2013). However, this paper represents its first application to PV. 

2. Probabilistic Generation Portfolio Modelling Tool 

The modelling tool employed in this paper is a simulation based tool that can assess future generation portfolios with 

PV against multiple objectives given a range of potential future uncertainties. The tool adopts a long-term societal 

perspective and thus concentrates on overall future industry-wide outcomes for different electricity generation 

portfolios. The modelling tool extends the load duration curve (LDC) based optimal generation mix techniques by 

using Monte Carlo simulation (MCS) to formally incorporate key uncertainties which directly impact overall 

generation costs into the assessment. Outputs from the tool are the complete range of individual simulations of 

annual generation costs and CO2 emissions for each possible generation portfolio, which can, therefore, be 

represented by a series of probability distributions. The ñexpectedò generation cost and CO2 emissions for a 

particular portfolio represents the average of all these simulated generation costs and CO2 emissions from every 

Monte Carlo run for a single year in the future. The cost spread for a generation portfolio is denoted by the standard 

deviation (SD), which represents associated ócost riskô and is referred to as ócost uncertaintyô in this paper.
1
 The tool 

then applies portfolio analysis techniques to determine the cost-risk efficient frontier (EF) 
2
 by mapping the expected 

generation cost and cost uncertainty for different generation portfolios in the value-risk space. Generation portfolios 

that are not on the EF are considered suboptimal in terms of cost-risk. Such techniques provide a basis for analysing 

cost and risk tradeoffs among different generation technology portfolios.
3
  

 

Inputs into the tool consist of economic and operating parameters of each generation option as well as probability 

distributions of key uncertain parameters which are fossil-fuel prices, carbon price, hourly electricity demand and 

plant capital costs. Demand is represented by a Load Duration Curve (LDC) where estimated hourly demand over a 

year is arranged in descending order of magnitude. For each Monte Carlo run, the total annual generation cost of 

each generation portfolio consists of total annual fixed costs and variable costs. The annual fixed cost is determined 

based on the installed generation capacity of each technology in the portfolio. The fixed cost is made up of 

annualised plant capital cost, fixed operation & maintenance (O&M) and annualised costs of upgrading or building 

new transmission networks to accommodate such portfolio. The annual variable cost of generation portfolio is 

calculated based on annual energy (MWh) generated by each technology in the portfolio given a LDC. The variable 

cost comprises variable O&M, fuel costs and carbon costs. The generation output of each technology in the portfolio 

in each period of the LDC is determined using simulated partial economic dispatch with the objective to minimise 

operating costs subjected to demand and capacity constraints. Note that transmission and other possible inter-

temporal operating constraints such as ramp rates and minimum operating levels of generating units are not taken 

into consideration. Total annual CO2 emissions of generation portfolios are calculated from the annual energy and 

emission intensity of each technology. 

 

In the tool, RE generations such as PV are given the first priority in the dispatch as they can offset the need to 

dispatch fossil-fuel generation. With this assumption, the actual or simulated hourly renewable generation is 

                                                           
1 Since the tool applies MCS techniques which can incorporate virtually any type of input probability distribution, it can support 

sophisticated risk assessments including for example downside economic risks and other forms of risk-weighted uncertainty 

measures that suit particular risk preferences as shown in (Vithayasrichareon and MacGill, 2012a). This paper, however, only 

focuses on standard deviation as a measure of cost risk. 
2 The efficient frontier concept is used in the Mean Variance Portfolio (MVP) theory for financial portfolio optimisation 

(Markowitz, 1952). It has been increasing applied to future generation portfolio planning frameworks (Awerbuch, 2006). 
3
 Modifications of this EF approach can also be used to highlight other potential tradeoffs between different generation portfolios 

such as their expected overall costs versus CO2 emissions as demonstrated in (Vithayasrichareon and MacGill, 2012b). 
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subtracted from hourly demand over a year. The resulting residual (net) demand, after accounting for RE generation, 

is then rearranged in descending order of magnitude to obtain a residual load duration curve (RLDC), which is to be 

served by conventional technologies in the portfolio. This technique has been widely in generation planning 

frameworks (Denholm and Margolis, 2007; Delarue et al., 2011).   

3. The Australian National Electricity Market (NEM) Case Study 

This paper considers a case study of the Australian National Electricity Market (NEM) that faces highly uncertain 

future fuel prices, carbon prices, electricity demand and new-build plant capital costs. It is assumed that there are 

five generation options: brown coal, black coal, combined cycle gas turbine (CCGT), open cycle gas turbine 

(OCGT) and PV. Hourly electricity demand and PV generation are the actual and simulated data for the NEM in 

2010. The year 2010 was chosen since weather records for this year are largely complete, and therefore would 

provide relatively accurate simulations of hourly PV generation across different locations in the NEM. Generator 

characteristics and cost parameters used for the simulations are based on the 2030 cost estimates  obtained from the 

Australian Energy Technology Assessment (AETA) report by the Bureau of Resources and Energy Economics 

(BREE) (BREE, 2012). Transmission costs were estimated from the National Transmission Network Development 

Plan (NTNDP) by the Australian Energy Market Operator (AEMO) (AEMO, 2011a). Different PV penetrations 

from 0% to 25% are simulated for all possible thermal generating plant portfolios. Each input parameter for this 

specific case study is described in the following subsections. These inputs include demand and PV generation, 

transmission cost estimates, generator data and the stochastic models of uncertain fuel and carbon prices, demand 

and new-build plant capital costs. 

3.1 Hourly electricity demand and solar PV modelling 

Hourly demand for the NEM in 2010 was obtained by aggregating actual half-hourly demand data for each state 

provided by AEMO and averaging them into aggregate hourly values (AEMO, 2010). Twelve locations comprising 

of major cities and regional locations in each state of the NEM were selected to model hourly PV generation for 

2010. By modelling PV plants in both cities and regional locations, the diversity value of PV plants across different 

locations in the NEM can be captured. Fig. 1 shows a map of the selected sites for large-scale PV plants for the 

simulation where the red symbols indicate major cities while the blue symbols indicate regional locations. 

For the major cities, it is assumed there is no requirement for building new 

or upgrading existing networks to accommodate high PV penetrations. On 

the other hand, centralised PV plants in the selected regional sites would 

require new transmission lines or network augmentations. Hence, additional 

transmission costs associated with centralised PV plants in these regional 

locations are also taken into consideration. System Advisor Model (SAM) 

software was used to model hourly PV generation outputs in 2010 for the 

selected locations. SAM is a tool developed by the National Renewable 

Energy Laboratory (NREL) to model the performance and cost of grid-

connected renewable generation technologies, with a particular focus on 

solar technologies (NREL, 2012). Using hourly weather data for a given 

location, SAM estimates hourly electricity generation output for any 

selected solar technology systems. The hourly PV generation in each 

location was modelled based on a 1-MW fixed flat plate solar PV plant, 

with north-facing arrays and tilted at latitude angle. The hourly PV 

generation is scaled up for a desired PV penetration level.  

 

Fig. 1. Locations of PV plants for the simulation. 

This study considers 0%-25% PV penetration levels in 5% increments and assuming the same installed PV capacity 

for each of the selected locations. Fig. 2 illustrates the simulated hourly PV generation for all the selected locations 

at 20% PV energy penetration as well as the actual NEM hourly electricity demand in 2010. Hourly simulated PV 

generation was subtracted from the demand to obtain a residual demand profile which was then rearranged to obtain 

a Residual Load Duration Curve (RLDC), which is to be served by thermal generation technologies. The RLDCs for 

different PV penetrations are shown in Fig. 3. The figure shows that the RLDCs drop sharply after the top 70% for 

high PV penetrations. This is because higher PV penetration would only increase daytime PV outputs while the 

outputs during any other times are still zero. Therefore, the contribution of PV plants in reducing high demand on 

winter evenings is rather limited. This study assumes that PV plants always generate when available.
4
 

                                                           
4 In practice, minimum operating levels, startup times and ramp rate limits for thermal plants might necessitate curtailments. 
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Fig. 2. NEM hourly demand and simulated PV generation at 20% penetration in 2010. 

 
Fig. 3. Residual load duration curves for different PV penetrations. 

3.2 Generator data 

New entrant generation data for each technology were obtained from the 2012 AETA report based on the 2030 cost 

estimates (BREE, 2012). Annualised capital costs for each technology are determined using a 5% discount rate. 

Table 1: Generator data 

Parameters Technology 

Brown 

Coal 

Black 

coal 

CCGT OCGT Solar PV 

Plant life (years) 50 50 40 30 30 

Typical size (MW) 750 750 386 564 100 

Capital cost ($million/MW) 3.8 3.0 1.1 0.8 1.6 

Fixed O&M ($/MW/yr) 60,500 50,500 10,000 4,000 25,000 

Variable O&M ($/MWh) 8 7 4 10 0* 

Thermal Efficiency (%) 32.3 41.9 49.5 35 N/A 

Heat Rate (GJ/MWh) 11.144 8.591 7.272 10.285 N/A 

Emission factor (tCO2/MWh) 1.024 0.773 0.368 0.515 0 

Remark: *Variable O&M cost for PV has been accounted for in fixed O&M cost. 

3.3 Transmission cost estimates 

The study assumes new transmission lines would be required for PV plants in the selected regional areas while those 

in the major cities do not require new networks or upgrades of existing networks. Associated transmission costs for 

centralised PV plants in the regional sites are determined based on their distances to the nearest load centres or major 

transmission hubs, maximum PV outputs and indicative transmission cost estimates provided by AEMO (AEMO, 

2011a). Transmission cost estimate for high voltage AC lines used in this study is $700/MW/km. Total associated 

transmission cost for each regional location is determined for each case of PV penetration level. Annualised 

transmission cost is calculated assuming economic lifetime of transmission line is 50 years and a 5% discount rate. 

3.4 Modelling uncertainties 

This study considers key cost parameters to be highly uncertain, which is a reasonable assumption given the future 

cost estimates are used. These parameters include fuel prices carbon price and plant capital costs. In addition, the 



5 

electricity demand is assumed to be uncertain. Fuel prices and capital cost uncertainties were modelled based on the 

percentage uncertainty of these costs. Demand uncertainty was modelled as the uncertainties in the RLDC for each 

PV penetration. Fuel prices, carbon price and capital cost uncertainties are modelled by lognormal distributions to 

reflect the asymmetric downside risk of such costs which demand uncertainty is modelled by a normal distribution. 

Both types of distributions can be characterised by mean (expected value) and standard deviation (SD). The expected 

fuel prices and plant capital costs were obtained from the 2030 estimates for the NEM while their SDs were 

estimated from the percentage uncertainty for fuel prices and capital costs provided in (BREE, 2012).  

 

The number of simulations is set at 10,000 each of which consists of a set of sample fuel and carbon prices, plant 

capital costs and RLDC. These 10,000 set of simulated fuel and carbon prices, capital costs and RLDCs are used for 

calculating the annual generation costs and emissions for each possible generation portfolio considered. 

3.4.1 Modelling fuel price and carbon price uncertainties 

SDs of brown coal, black coal and natural gas price were estimated to be 29%, 6% and 30% of their expected values 

respectively. Table 2 summarises the expected fuel prices and their SDs for each fuel type.  

Table 2: Expected price and SD for each fuel type 

 

Fuel price ($/GJ) 

Brown  

coal 

Black  

coal 

Natural  

gas  

Mean 0.5 1.65 8 

SD 0.15 0.1 2.4 

Correlations among fuel and carbon prices are also taken into account when modelling these uncertainties. This is a 

particularly important aspect given that the movement of gas, coal and carbon prices has exhibited considerable 

correlations as evidenced in EU and UK market. Such correlations have been demonstrated to influence the impact 

of uncertainty (Awerbuch and Yang, 2008; Vithayasrichareon, 2012). The correlation coefficients among fuel and 

carbon prices used in this study are shown in Table 3. These values were estimated from historical trends in OECD 

countries and a number of previous studies
5
 (IEA, 2012).        

Table 3: Correlation coefficients among fuel and carbon prices. 

Brown coal & 

Black coal price 

Coal &  

gas price 

Gas &  

carbon price 

Coal & carbon 

price 

0.95 0.6 0.45 -0.35 

Multivariate Monte Carlo simulation technique is used to generate correlated samples of brown coal, black coal, gas 

and carbon prices
6
. Histograms of correlated fuel and carbon prices over 10,000 MCS runs for a $20/tCO2 scenario 

based on the mean, SD and correlation values from Table 2 and Table 3 are shown in Fig. 4. Scatter plots of 10,000 

correlated samples are also shown in the figure highlighting the correlations among fuel and carbon prices. 

 
Fig. 4. Histograms of 10000 samples of correlated fuel and carbon prices and their scatter plots. 

                                                           
5 Although the correlation coefficients are not necessarily applicable to the actual fuel supply situation in the NEM, they do 

highlight the importance of considering such factors in generation investment and planning. 
6 Multivariate simulation technique is used for reproducing random samples of uncertain parameters while preserving their 

respective marginal distribution properties and correlation structure. 
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3.4.2 Modelling capital cost uncertainty 

SDs of the capital costs of brown coal, black coal CCGT, OCGT and PV plants were estimated to be 36%, 41%, 

28%, 30% and 60% of their expected values respectively. The expected capital costs and SDs for each technology 

used in the simulation are shown in Table 4.  

Table 4: Expected capital cost and SD for each generation technology 

 Capital cost ($million/MW) 

Brown 

coal 

Black 

coal 

CCGT OCGT PV 

Mean 3.8 3 1.1 0.8 1.6 

SD (value) 1.36 1.2 0.32 0.23 0.94 

3.4.3 Modelling electricity demand uncertainty 

Demand uncertainty is modelled by assuming a normal distribution of residual peak demand (peak demand RLDC) 

for each PV penetration. The SD of residual peak demand is estimated based on 90%, 50% and 10% óprobability of 

exceedenceô (POE) provided by AEMO which indicate the likelihood that the maximum demand will exceed 

projections (AEMO, 2011b). The POE projections are used to determine the SD of the expected peak demand, 

which is approximately 4% of the expected value. For each PV penetration, each random RLDC is derived from each 

sample of residual peak demand. The difference between a random residual peak demand and the expected peak 

demand is then used to adjust the demand in every period of the expected RLDC to obtain a random RLDC for each 

PV penetration. The uncertainty in the RLDC is therefore modelled as vertical shifts in the expected RLDC thus 

maintaining the same shape and steepness. Such concept is illustrated in Fig. 5, which shows the histograms of 

10,000 residual peak demand and random RLDCs for 5% and 20% PV penetrations. There are some periods when 

the simulated residual demand exceeded the installed generation capacity. The costs of energy not served in those 

periods are included in the calculation of the overall generation cost during each Monte Carlo run. The value of 

energy not served used is $12,900/MWh, which corresponds to the spot market price cap in the NEM. 

 
Fig. 5. Histograms of peak demand and associated RLDCs over 10,000 simulations for 5% and 20% PV 

4. Simulation Results 

The overall yearly generation costs and CO2 emissions of every generation portfolio were calculated for 10,000 

simulated future fuel and carbon prices, demand and plant capital costs. The portfolio costs and emissions during 

each Monte Carlo run (each set of uncertain parameters) were determined based on the installed capacity and annual 

energy generated by each technology in the portfolio.
7
 The expected cost and CO2 emissions of each generation 

portfolio are the average values of costs and emissions over the 10,000 Monte Carlo runs. SD of generation costs, as 

well as higher statistical moments, of the cost distributions can be determined since the results provide a full 

spectrum of possible generation costs of each portfolio. Hence the results can be used to analyse the downside risks 

of generation portfolios, which indicated by the magnitude of rare but high cost outcomes. This is particular 

importance given that the distributions of energy commodity prices have been frequently observed to exhibit major 

deviations from normality due to their asymmetry and tail fatness (Eydeland and Wolyniec, 2003). However, only 

SD as a measure of cost risk is considered in this paper. 

                                                           
7 Note that, a change in merit order dispatch can occur during each Monte Carlo run. For example, a particular set of uncertain 

parameters may produce low gas price, high coal and carbon prices which result in CCGT to have the lowest variable costs 

compared with the other technologies. 
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4.1 Portfolio expected cost, cost uncertainty and CO2 emissions 

Fig. 6 uses a scenario of an expected carbon price of $20/tCO2 to show the expected costs, cost uncertainty and 

expected CO2 emissions of different thermal generation portfolios for 5% and 20% PV penetrations. Expected cost 

and CO2 emissions of each generation portfolio are plotted against its SD, which represents cost uncertainty.
8
 The 

circles represent the expected generation costs while the CO2 emissions of the corresponding portfolios are 

represented by the asterisks in the same vertical plane. The efficient frontier (EF)
9
 is shown by the solid line.  

 

The portfolio expected cost, cost uncertainty and emissions change for different PV penetration. As illustrated in the 

figure, for an expected carbon price of $20/tCO2, higher PV penetration would appear to increase the portfolio 

expected costs and cost uncertainties. However, greater PV penetration would reduce the portfolio expected CO2 

emissions. In the examples shown in  

Fig. 6, the technology mixes in the optimal generation portfolios on the EF change slightly for different PV 

penetrations. The optimal portfolios change from portfolios A, B, C, D and E for the case of 5% PV to portfolios B, 

C, F and G for the case of 20% PV. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 6. Expected cost, cost uncertainty and CO2 emissions of the thermal generation portfolios for an expected carbon price of 

$20/tCO2 with 5% PV penetration (left) and 20% PV penetration (right). 

4.2 The impact of carbon pricing and different PV penetrations 

The frontiers showing cost-risk tradeoffs among optimal generation portfolios for different expected carbon prices 

and PV penetrations are shown in Fig. 7. For a low carbon price (i.e. $20/tCO2) as shown on the left graph of Fig. 7, 

higher PV penetrations increase overall industry costs and cost risk as indicated by the upward movements of the EF 

as PV increases. With a low carbon price, the optimal conventional generation portfolios consist mainly of brown 

and/or black coal. For higher carbon prices (i.e. from $50/tCO2), however, it is possible for the overall industry costs 

and associated cost risks to fall as PV penetration increases. In this case the EFs are shifted diagonally downwards as 

the PV penetrations increases implying lower industry costs and associated cost uncertainties. The reason is that PV 

reduces fossil fuel consumption and emissions, and hence the impacts of uncertain fossil fuel and carbon prices. For 

high carbon prices, the optimal mix of conventional generation changes as PV penetration increasesï in particular, 

away from coal and towards gas generation. 

                                                           
8 Note that not every generation portfolio in the simulation is presented on the graphs to aid clarity. Except for those on the EF, 

only generation portfolios with 20% increments on technology shares are shown. Furthermore, portfolios which have high 

expected cost and cost uncertainty were omitted in order to expand the resolutions of the axes. 
9 Efficient Frontier (EF) represents the lowest possible expected costs and cost uncertainty tradeoffs. Along the EF, the overall 

expected costs can only be reduced by accepting higher cost uncertainties among the portfolios. 
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Fig. 7. EF containing optimal generation portfolios for different PV penetrations for different expected carbon prices. 

Fig. 8 shows that portfolio generation costs generally increase with increased PV penetration for a range of carbon 

prices. However, the cost increases become smaller as carbon price increases until at a ñthresholdò carbon price 

where the portfolio costs are the same for any PV penetration level. Beyond the threshold carbon price, the portfolio 

expected costs would begin to fall as PV increases. The higher the carbon price, the more cost reductions can be 

achieved with a higher share of PV. The level of threshold carbon price is influenced by the share of gas-fired 

generation. Portfolios with high proportions of combined brown and black coal would require higher threshold 

carbon price compared with those that comprise mostly of CCGT and/or OCGT. 

 

 
Fig. 8. Expected portfolio costs for different carbon prices and PV penetrations for some selected thermal generation portfolios. 

This impact appears to depend largely on the proportion of fixed and variable costs in the portfolios. Portfolios with 

a majority of CCGT and/or OCGT have high proportion of variable costs compared to their fixed costs while it is 

vice verso for those that comprises mainly of brown and/or black coal. Therefore, the reduction in variable costs for 

gas-dominated generation portfolios would exceed the increase in fixed costs resulting in a reduction of the overall 

generation costs. 

5. Conclusions 

The results show that PV generation can play a valuable role in hedging against uncertain future fossil-fuel prices 

and carbon pricing policies which subsequently reduce the risk of generation portfolios. The paper also illustrates 

that increasing the share of PV generation would reduce the overall CO2 emissions. More importantly, the results 

suggest that the imposition of a sufficient carbon price would enhance the economic value and encourage more 

EF move 

down as PV 

increases 

EF move down as 

PV increases 






