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ABSTRACT 

This paper employs a novel Monte-Carlo based generation portfolio assessment tool to 

explore the implications of increasing wind penetration and carbon prices within future 

electricity generation portfolios under considerable uncertainty. This tool combines 

optimal generation mix techniques with Monte Carlo simulation and portfolio analysis 

methods to determine expected overall generation costs, associated cost uncertainty and 

expected CO2 emissions for different possible generation portfolios. A case study of an 

electricity industry with coal, Combined Cycle Gas Turbines (CCGT), Open Cycle Gas 

Turbines (OCGT) and wind generation options that faces uncertain future fossil-fuel 

prices, carbon pricing, electricity demand and plant construction costs is presented to 

illustrate some of the key issues associated with growing wind penetrations. The case 

study uses half-hourly demand and wind generation data from South Eastern Australia, 

and regional estimates of new-build plant costs and characteristics. Results suggest that 

although wind generation generally increases overall industry costs, it reduces associated 

cost uncertainties and CO2 emissions. However, there are some cases in which wind 

generation can reduce the overall costs of generation portfolios. The extent to which wind 

penetration affects industry expected costs and uncertainties depends on the level of 

carbon price and the conventional technology mix in the portfolios.  

Keywords: Generation portfolio analysis; wind power integration; carbon price. 

 

1.   Introduction 

Wind generation is fast becoming a significant generation source worldwide, and 

particularly so in some European countries such as Denmark, Germany, Portugal, and 

Spain, where it is now contributing greater than 10% of overall electricity generation 

(EWEA, 2011). With increasing international concern over the threat of global climate 

change, a growing number of countries have established regulatory frameworks and 

policies to reduce carbon emissions in their electricity sectors and promote renewable 

generation. Currently, electricity generation is responsible for approximately 40% of 

global CO2 emissions and this contribution  is still rising (IEA, 2009a). Renewable 

generation from sources such as wind is, therefore, increasingly recognised as an 

important low-carbon complement to existing generation technologies. Furthermore, 

mailto:peerapat@unsw.edu.au


< Preprint submitted to Elsevier – October 2012 > 

 

2 

 

growing uncertainties over future fossil-fuel prices and their availability have heightened 

concerns over the security of electricity supply in numerous countries and this has also 

contributed to the recent promotion of renewable generation. 

Wind has proven to be one of the most cost effective ‘new’ (non-hydro) renewable 

energy options and is the first intermittent energy source to reach significant penetrations 

in large power systems (MacGill, 2010). Wind energy, however, possesses different 

characteristics from conventional generation sources due to its highly variable and 

somewhat unpredictable nature. Given the wind industry’s rapid growth, there are 

increasing concerns regarding the potential operational and economic impacts of 

incorporating wind generation into power systems (Smith et al., 2007). High wind 

penetrations increase the complexity of electricity industry operation in terms of 

generation dispatch and scheduling (Traber and Kemfert, 2011). Furthermore, it also 

places additional requirements for ancillary services and more sophisticated economic 

dispatch and unit commitment (Tuohy et al., 2009). 

From a planning and investment perspective, which is a main focus of this paper, 

large-scale deployment of intermittent generation sources such as wind power seems 

likely to have significant implications for conventional generating plant investment and 

planning in the industry. In providing highly variable yet very low operating cost 

generation, wind almost invariably changes the requirements placed on conventional 

generation capacity to meet electricity demand (Bushnell, 2010). 

Currently, numerous countries around the world are also establishing mechanisms 

to ‘price’ carbon emissions within the electricity industry. However, there is continuing 

uncertainty surrounding the longer-term impacts of climate change policies and the level 

of carbon price likely to be required to deliver effective action on climate change (IEA, 

2007; Newcomer et al., 2008). Nevertheless, significant carbon prices are likely to be one 

of the critical factors in driving future generation investment towards low emission and 

renewable technologies such as wind power. Beyond present uncertainties regarding 

climate change policies, increased uncertainties about future fossil fuels prices, 

fluctuating capital costs for generation plant and recent reductions in demand growth in 

many countries following the Global Financial Crisis (GFC) have also all increased the 

challenge for generation investment decision making in the electricity industry. 

Wind power is a capital intensive technology but its operating costs are very low 

due to its ‘free’ fuel. Furthermore, a carbon price will have no impact on these costs. 

Although the direct costs of wind power are currently higher than conventional 

technologies in most countries, it has been suggested that adding wind can help to hedge 

against fossil fuel and carbon price uncertainty, and therefore reduce the risk of 

generation portfolios (Awerbuch, 2006; Doherty et al., 2006).  

This paper employs a novel generation investment decision support tool developed 

in Vithayasrichareon and MacGill (2012a) to explore the potential impacts of increasing 

wind penetrations on the expected cost, associated cost uncertainty and carbon emissions 

of different future conventional generating plant portfolios. The tool is used to assess the 

potential performance of different mixes of wind, conventional pulverised coal, 

Combined Cycle Gas Turbine (CCGT) and Open Cycle Gas Turbine (OCGT) plants 
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under future uncertain, coal and gas prices, carbon price, electricity demand and plant 

capital costs. Of particular interest are the interactions between varied wind penetrations, 

carbon prices and fossil-fuel plant mix on overall portfolio costs and uncertainties, as well 

as carbon emissions. This study extends our previous work by incorporating different 

wind penetrations into possible generation portfolio options.  

Section 2 describes the decision support tool used and its application to evaluate 

generation portfolios that include varied levels of wind generation. Section 3 describes the 

case study, which is based on wind generation and demand in South Eastern Australia, as 

well as regional new-build plant and fuel costs. The results and analysis are presented in 

Section 4 followed by some tentative conclusions on the potential implications and 

interactions of wind generation and carbon prices on different conventional plant 

portfolios in Section 5.  

2.   Monte Carlo Based Decision-Support Tool for Generation 

Investment Including Wind Generation 

The generation investment and planning decision-support tool presented in this 

paper is intended to facilitate policy-makers and planners to gain high-level insights into 

some of the challenges associated with different wind penetrations and carbon pricing 

policies in future generation portfolios. Hence, the tool adopts a long-term overall societal 

perspective where the key concern is how best the electricity industry might meet future 

demand at lowest societal cost within acceptable levels of risks and environmental 

constraints (Jansen et al., 2006). Therefore, it focuses on overall industry generation costs 

without considering issues associated with privately undertaken generation investment 

within liberalised electricity markets such as strategic behaviors of electricity industry 

participants. The tool also permits decision-makers to identify future generation portfolios 

which suit their particular risk preferences and consider wider multi-criterion objectives 

including industry-wide greenhouse emissions and exposure to different fuel markets. 

2.1. Monte Carlo Model for Assessing Generation Portfolios 

The tool used in this paper extends deterministic load duration curve (LDC) 

methods for solving optimal generation mixes by incorporating uncertainties for key input 

cost assumptions through Monte Carlo Simulation (MCS). The tool then applies financial 

portfolios analysis techniques to determine an efficient frontier of expected overall 

industry generation costs and associated cost uncertainties for different generation 

portfolios. The tool determines a probability distribution of overall industry costs and CO2 

emissions for each possible generation portfolio from the MCS. Since the technique is 

based on MCS, it does not depend upon only normal distributions being used to model 

uncertainties - arbitrarily complex and interacting probability distributions can also be 

applied (Duenas et al., 2011; Roques et al., 2006; Spinney and Watkins, 1996). For 

simplicity, log-normal probability distributions are used to represent fuel cost, carbon 

costs, and plant capital costs in the case study in section 3. Hence the cost spread of each 

generation portfolio can be represented by a standard deviation (SD) which is referred to, 

here, as ‘cost uncertainty’. It has a similar meaning to ‘risk’ in the economic and financial 
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context. However, the MCS techniques which the tool incorporates provide a rich 

analytical framework for assessing various risk measures other than variance to suit 

particular risk preferences. 

Although the tool employs an efficient frontier approach to analyse its results that 

has been previously used in Mean Variance Portfolio (MVP) analysis (Awerbuch, 2006; 

Huang and Wu, 2008), the method for obtaining the expected generation portfolios costs 

and associated cost uncertainties is different. In standard MVP techniques, the expected 

portfolio cost is calculated from the weighted average of the individual technology costs 

(based on an assumed capacity factor) in the portfolio while the expected portfolio risk is 

determined from the weighted average of risks of the individual technology based on their 

expected correlations and covariances. In our method, by contrast, the expected cost and 

risks of different generation portfolios are directly obtained from running MCS for 

several thousand scenarios of uncertain input parameters. With this approach, uncertain 

parameters which include fuel prices, carbon price, future demand, and plant capital costs 

are all characterised by user-specified probability distributions.  Furthermore, correlations 

among gas, coal and carbon prices can also be taken into consideration. There is no 

restriction on using only normal distribution to model these uncertainties as seen with 

some other approaches – almost any form of distribution can be incorporated through the 

MCS technique.  

Standard portfolio analysis assumes that the portfolio costs or returns are 

characterised by normal distributions and therefore can be described using only the first 

two moments, which are mean and variance. However, the distributions of energy 

commodity prices have been frequently observed to exhibit major deviations from 

normality due to their asymmetry and tail fatness (Eydeland and Wolyniec, 2003). The 

tail fatness reflects a greater possibility of rare but extremely high price events, which is 

one of the major concerns to utility investors and policy makers.  Hence, higher moments 

should, arguably, also be considered in addition the mean and variance in assessing 

generation portfolios. The possible significance of higher moments is partially reflected in 

Madlener and Wenk (2008) yet otherwise mostly overlooked in the literature on 

generation portfolio analysis.  

Also, standard MVP analysis is typically carried out using estimated levelised costs 

of electricity from different generation options. As such, it requires deterministic 

assumptions on the capacity factor of each technology in the portfolio – assumptions that 

might not hold for future fuel and carbon prices. Furthermore since the load is not 

uniform, such assumptions would fall short in recognising the value of different types of 

generation technology given the tradeoffs between their fixed and variable costs. The 

importance of this has been recognised for example in Gotham et al. (2009) which 

decomposes load into various types having different load factors in order to better value 

their characteristics. Furthermore, estimating the value of intermittent renewable 

generation technologies, particularly wind, using the levelised cost method is highly 

problematic because it does not reflect the different values of generation which have 

greater or lesser intermittency and dispatchability. Whilst the levelised cost of wind and 

OCGT might be similar, the OCGT is certainly of greater value in ensuring supply meets 



< Preprint submitted to Elsevier – October 2012 > 

 

5 

 

demand at all times. As such,  levelised cost comparisons tend to overvalue intermittent 

generation technologies compared to dispatchable conventional generating units (Joskow, 

2010).  

The approach presented in our paper does not assume a capacity factor for each 

generation technology – instead the generation output of each plant type in a portfolio is 

determined from half-hourly economic dispatch for particular fuel and carbon prices to 

meet changing demand. Half-hourly wind generation output is simulated based on the 

actual half-hourly wind generation output from wind farms in South Eastern Australia for 

a particular reference year, as will be explained in Section 3. 

In this tool, for each Monte Carlo run, total generation cost for each generation 

portfolio is calculated based on each set of correlated sample fuel and carbon prices, 

capital cost and demand in each period of a LDC.  The total generation cost of each 

portfolio consists of annualised fixed cost and variable costs, and is calculated by  

  

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where FCn is the annualised fixed cost ($/MW), In is the installed capacity (MW), VCn is 

the variable operating cost per unit ($/MWh), En is the energy (MWh) generated by each 

technology n in a year, and N is the number of generation technologies considered in a 

portfolio. 

The annualised fixed cost is calculated from the overnight capital cost of each 

generation technology using the Capital Recovery Factor (CRF) as expressed in Eq. (2) 

and Eq. (3). The CRF determines the equal amount of regular payments in a present 

amount of money. 

               Annualised capital cost = Overnight capital cost ($/MW) × CRF                     (2) 
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where m is the plant life and j is the discount rate. 

The variable operating cost comprises of operational and maintenance (O&M), fuel 

and carbon costs as detailed in Eq. (4) and (5). 

     Fuel costn ($/MWh) = Fuel pricen ($/GJ) × Average heat raten (GJ/MWh)        (4) 

          Carbon costn ($/MWh) = EFn × Carbon price ($/tCO2)                    (5) 

where EFn is the emission factor (tCO2/MWh) of generation technology n. 

The generation output of each technology in each period of the LDC is determined 

using partial economic dispatch
1
 with an objective function to minimise operating costs in 

each period of the LDC subjected to constraints as shown in Eq. (6) – (8). 

   )P(VCMinimize n

N

1n
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                          (6) 

                                                      
1
 For the partial economic dispatch, transmission network and other inter-temporal operating constraints 

such as ramp rates and minimum operating levels of generation units are not taken into consideration. 
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where VCn(Pn) is the variable operating cost ($) of generating power Pn (MW) from 

technology n, (with In representing the total installed capacity of technology n), and D is 

the demand (MW) in each interval of the LDC. 

The installed capacity of each technology is calculated from its percentage share of 

generation portfolio. The total installed capacity is determined based on a specific 

reliability criterion so that the electricity demand is met for a certain percentage of the 

time in a year. This is explained in detail in section 3.1. Total CO2 emission of each 

portfolio in a year is determined based on electrical energy produced and emissions factor 

or each technology within the portfolio. Outputs from the MCS represent a range of 

possible annual industry generation costs for each generation portfolio, and can therefore 

be represented by a probability distribution. 

2.2. Incorporating Wind Generation 

One challenge for standard LDC approaches is the incorporation of variable, non-

storable, and somewhat unpredictable renewable energy resources such as wind and solar 

into generation portfolios. These standard approaches assume that all plants are 

dispatchable across their entire output range as required, which is certainly not the case 

for these renewable technologies. 

In this paper, the tool is applied to incorporating wind generation through the use of 

residual load duration curve (RLDC) techniques where simulated half-hourly wind 

generation output is subtracted from actual demand over the same time. The resulting 

residual (net) demand, after accounting for wind generation, is then arranged in 

descending order of magnitude to obtain a RLDC. It is this curve which has to be met by 

the conventional generation technologies in the portfolio. Wind power is considered 

exogenous and treated as negative load given that it has very low operating costs and can 

offset the need to dispatch conventional fossil-fuel generation (Delarue et al., 2011; 

Doherty et al., 2006; Ummels et al., 2007). This approach incorporates the variability of 

wind generation and also captures the actual relationship between typically weather and 

climate dependent renewable generation sources and electricity demand. 

Note that while the use of LDC and RLDC has many advantages, hence their 

widespread application in investment oriented decision support tools, the approach does 

remove the chronology (change over time) of demand, and, in this case, also wind. This 

does involve some limitations in assessing electricity industry operation. Inter-temporal 

operating constraints including issues such as unit commitment, spinning reserves and 

ramp rates are not currently included in the tool. However, some of these issues can be 

incorporated as possible extensions to the method as discussed in De Jonghe et al. (2011). 

These extensions are further discussed in the conclusion of this paper. 

The work in this paper differs to existing literature in a number of aspects. In 

particular, it explicitly incorporates multiple and interacting uncertainties including fuel 

and carbon prices, electricity demand and plant capital costs into the analysis of long-term 
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generation planning and investment. Furthermore, it incorporates generation portfolio 

techniques to explore tradeoffs between different criteria that are relevant for policy 

decision-making. 

This paper does not explicitly model uncertainty in wind generation, however it 

should represent a relatively straightforward extension since the tool already incorporates 

demand uncertainty, as described in Section 3. In this work, only new-build generation 

portfolios are assessed without considering existing generating capacity. Nevertheless, the 

approach taken by the tool can incorporate existing generating plant within possible 

future portfolios using a similar approach presented in Vithayasrichareon and MacGill 

(2012b). 

3.   Case Study Description 

This paper applies the tool to a case study of an electricity industry with coal, 

CCGT, and OCGT and wind generation options that faces uncertain future fuel prices, 

carbon prices, electricity demand and new-build plant capital costs. This study assumes 

that these fuel prices, carbon price and capital cost uncertainties can be represented by 

lognormal distributions. This reflects the asymmetric downside risks of such costs. 

Electricity demand is represented by a LDC and its uncertainty is modeled by assuming a 

normal distribution of peak demand in a RLDC. Therefore, these uncertain parameters 

can be described through their mean and SD.  

The data for this case study including demand and wind generation, fuel and other 

costs are based on the actual dispatch data and consultancy studies for the states of South 

Australia (SA), Victoria (VIC) and Tasmania (TAS) in Australia. All monetary values are 

shown as Australian dollars. Key uncertain input parameters and their probabilities are 

modeled based on historical data and independent expert opinion in the literature, as 

described in Section 3.3. Given that decision-making in generation investment and 

planning inevitably requires decision-makers forming some views about future drivers 

such as fuel prices and various cost factors, historical data and expert opinions are often 

used in the absence of better approaches (Savvides, 1994). Note, however, that this tool 

does not force tight constraints on the way that future uncertainty is incorporated. 

Different levels of wind penetration are simulated for all of the possible range of 

thermal generating plant portfolios. The proportion of coal, CCGT and OCGT are varied 

from 0% to 100% in 10% increments resulting in 66 possible combinations of generation 

portfolios. For each of these generation portfolios, the calculation of overall industry costs 

and emissions is repeated for 10,000 simulated fuel and carbon prices, demand and capital 

costs. 

3.1. Expected Demand Profile and Wind Generation Data 

The demand and wind generation data used for the simulation are the actual 30-

minute data in the state of SA, VIC and TAS in 2009 provided by the Australian Energy 

Market Operator (AEMO) (AEMO, 2009b). This region was chosen because of the 

significant wind generation already in place hence it provides a reasonable basis for 

simulating high wind penetrations. 
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The year 2009 was used as a reference year to model total 30-minute wind 

generation output for different wind penetrations. However, during 2009 the installed 

wind generation capacity in these three states increased from 960 MW to 1,450 MW.  

Therefore, in order to accurately model wind generation outputs for different penetrations, 

the actual wind generation in 2009 has been scaled to reflect the full-year installed wind 

generation capacity of 1,450 MW. Fig. 1 shows the total simulated wind generation 

output in these three states in 2009 which also indicates the high variability of the wind 

generation output.   

 
Fig. 1. Simulated wind power output in 30-minute interval in SA-VIC-TAS reflecting the full year installed 

wind capacity in 2009. 

The wind generation profile shown in Fig. 1 is then use as a basis to model for 

higher wind penetrations than the present 5.2%. Scenarios from 0% to 25% wind energy 

penetration are undertaken in 5% increments. Note that this approach is likely to over-

estimate the actual variability of high wind penetrations as one would expect some 

benefits from diversity with more wind farms (Electricity Supply Industry Planning 

Council (ESIPC), 2004; Milligan et al., 2009).
2
 Fig. 2 shows the electricity demand and 

wind power for different simulated wind penetrations in 30-minute intervals. 

 
Fig. 2. Demand and wind power output for different penetrations over a year. 

Wind generation is modeled as negative load and is therefore subtracted from the 

                                                      
2
 This is also likely to underestimate the diversity value of wind generation since other potential wind farm 

sites in the system are not considered. 
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half hourly demand over the year to obtain a residual demand profile. This residual 

demand profile is then rearranged in descending order of magnitude to obtain a Residual 

Load Duration Curve (RLDC), as shown in Fig. 3. The resulting RLDC is to be served by 

conventional generation technologies, which in this study are coal, CCGT and OCGT. In 

order to reduce computational time, the half-hourly LDC and RLDCs are simplified into 

876 segments each representing the 10-hour average demand. 

Fig. 3 also indicates there was no excess wind generation in any period for the 

penetration levels in the range of 5% to 25% (i.e. total demand always greater than total 

wind power output), therefore wind generating units are assumed to always generate 

when available without the need for curtailment. In practice, minimum operating levels, 

start-up times and costs, and ramp rate limits for thermal plants might necessitate such 

curtailment. 

 
Fig. 3. Residual Load Duration Curves for different wind penetrations. 

Demand uncertainty is modeled by assuming a normal distribution of peak demand 

in the RLDC. The SD of peak demand is approximated based on studies of this region 

that estimate the likelihood that the maximum demand will exceed projections for any 

given year using 90%, 50% and 10% ‘probability of exceedance’ projections as given in 

(AEMO, 2009a). The SD of peak demand is approximated to be 4% of the expected peak 

demand. 

The installed wind capacity for different wind energy penetrations is determined 

based on a 35% wind capacity factor, as shown in Eq. (9). Since typical wind capacity 

factors for the South Eastern Australian region are consistently between 32% to 40% 

(Electricity Supply Industry Planning Council (ESIPC), 2004).
3
  

                       
hours8760factorcapacityWind

energywindTotal
capacitywindInstalled


          (9) 

Table 1 shows the installed wind capacity, peak demand and its SD, and installed 

fossil-fuel generation capacity for different wind energy penetrations considered. The 

installed fossil-fuel generation capacity is determined through a probabilistic approach 

using a 95% reliability criterion. Such criterion implies that there is sufficient 

                                                      
3
 In practice, wind capacity factor may decrease as wind penetration increases as the ‘best’ wind sites are 

taken and only lower wind speed sites remain. Alternatively, it is also possible that advances in wind 

turbines might continue to improve capacity factors of newer farms.  
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conventional generation capacity to meet the expected residual demand for each wind 

penetration for at least 95% of the 10,000 simulated years. Given a normal distribution of 

peak demand, a 95% reliability criterion is translated to 1.96 SD above the expected peak 

demand. 

Table 1: Installed Wind Capacity, Peak demand and Installed Conventional Generation Capacity for 

Different Wind Penetrations. 

Wind 

penetration  

Installed wind 

capacity (MW) 

Peak demand on 

the RLDC (MW) 

SD of peak 

demand (MW) 

Installed fossil-fuel 

capacity (MW) 

0% 0 14,861 594 16,026 

5% 1,263 14,506 580 15,643 

10% 2,527 14,202 568 15,316 

15% 3,790 13,933 557 15,026 

20% 5,053 13,673 547 14,745 

25% 6,317 13,412 536 14,463 

 

3.2. Generator Data 

New entrant generation costs and characteristics of each technology considered in 

this study are obtained from (ACIL Tasman, 2008, 2009) as shown in Table 2. 

Table 2: Generator Data. 

 
Technology 

Coal CCGT OCGT Wind 

Plant life (years) 40 30 30 30 

Capital cost ($Million/MW) 2.5 1.4 1.0 2.6 

Fixed O&M ($/MW/yr) 40,000 13,000 7,500 20,000 

Variable O&M ($/MWh) 1.2 4.85 7.5 1.6 

Average Efficiency (%) 34 52 31 N/A 

Heat Rate (GJ/MWh) 10.590 6.922 11.612 N/A 

CO2 emission factor (tCO2/MWh) 1.05 0.45 0.7 0 

Fuel price ($/GJ) 0.6 5.2 5.2 0 

 

3.3. Stochastic Model of Uncertain Parameters  

Mean fuel prices are obtained from (ACIL Tasman, 2009) while their SD of gas and 

coal price used in this study is based on their historical trend which is estimated to be 

30% and 10% of their respective mean value (Blyth, 2008; IEA, 2009b; Roques et al., 

2008). These values are shown in Table 3.  

Table 3: Mean and SD of Coal and Gas Price. 

($/GJ) Coal price Gas price 

Mean 0.6 5.2 

SD 0.06 1.56 

 

Different scenarios of expected carbon prices are considered in order to explore the 

impact of carbon pricing on the expected overall industry generation cost, cost uncertainty 

and CO2 emissions of generation portfolios. The SD of carbon price is assumed at 50% of 

the expected value, reflecting the high uncertainty involved. 

Correlations among fuel and carbon prices are also considered, as shown in Table 4. 

These correlations are based on historical trends in Europe and some assumptions, which 

are approximately in line with recent studies (Awerbuch and Yang, 2008; Jansen et al., 
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2006; Yang and Blyth, 2007). Whilst not necessarily applicable to the actual fuel supply 

situation in the region being studies, they do highlight the importance of considering such 

factors in planning (Roques et al., 2008).  

Table 4: Correlation Coefficients between Fuel and Carbon Prices. 

Correlation  

Coefficient  

(i,j) 

Coal 

price 

(coal) 

Gas 

price 

(gas) 

Carbon 

price 

(carbon) 

Coal price (coal) 1 0.65 -0.32 

Gas price (gas) 0.65 1 0.45 

Carbon price (carbon) -0.32 0.45 1 

 

Correlated samples of gas, coal and carbon prices are generated from their marginal 

lognormal distributions using the multivariate Monte Carlo simulation procedure. 

Multivariate simulations reproduce random variables while preserving their marginal 

distribution properties and correlation structure (Chang et al., 1994). For each scenario of 

the expected carbon price, 10,000 samples of correlated fuel and carbon prices are 

generated. Fig. 4 shows the distribution of coal and gas prices and their scatter plot of 

10,000 MCS runs highlighting their positive correlations. 

 

 

 

 

 

 

 

 
   (a)                                                                         (b) 

 Fig. 4. (a) Distributions of coal and gas prices and (b) Scatter plot of coal and gas prices over 10,000 

Monte-Carlo simulations indicating their positive correlation. 

Demand uncertainty is modeled as the uncertainties in the RLDC for each wind 

penetration level. Each sample RLDC is derived based on each sample of residual peak 

demand for each wind penetration level. Samples of residual peak demand are generated 

from its probability distribution with mean and SD as indicated in Table 1. The difference 

between a sample peak demand and the reference peak demand is then used to adjust the 

demand in every period of the reference RLDC. The uncertainty in the RLDC is modeled 

as vertical shifts in the reference RLDC thus maintaining the same shape and steepness. 

Adding uncertainty in the shape of RLDC is a possible extension to this approach. With 

this approach, the uncertainty in the RLDC is, to some extent, translated into uncertainty 

in the aggregated wind generation. 

Samples RLDCs for different wind penetrations over 10,000 simulations are shown 

in Fig. 5. There are some instances when the simulated residual peak demands exceed the 

installed conventional generation capacity, resulting in energy not being served. The 

value of energy not served used in this study is $12,500/MWh, which is the current 

market price cap for the Australian National Electricity Market (NEM) (AEMO, 2010). 

The cost of energy not served is included in the overall industry generation cost during 
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each Monte Carlo run. 

 
Fig. 5. Simulated RLDCs over 10,000 Monte-Carlo runs for each case of wind penetration. 

The mean capital costs of each technology are obtained from (ACIL Tasman, 2008, 

2009), while their SD are determined from a range of capital costs of each technology 

presented in (IEA/NEA, 2005, 2010). The SD of capital cost for Coal, CCGT, OCGT and 

Wind is estimated to be 15%, 10%, 5% and 5% of their mean capital costs respectively, 

and are shown in Table 5. Although the expected capital cost of wind power is high, it is 

assumed that its capital cost spread is relatively low since wind turbines can be installed 

quickly. The SD of wind plants is approximately in line with a number of studies 

(Awerbuch and Berger, 2003; Delarue et al., 2011). The capital cost distributions of each 

technology over 10,000 simulations are shown in Fig. 6. 

Table 5: Mean and SD of Capital Costs. 

($Million/MW) Coal CCGT OCGT Wind 

Mean 2.5 1.4 1 2.6 

SD 0.375 0.14 0.05 0.13 

 

 
Fig. 6. Distribution of capital costs for different generation technologies. 

These samples of correlated fuel and carbon prices, demand and capital costs are 

used for calculating the expected generation cost, cost uncertainty and CO2 emissions of 

each generation portfolio for different wind penetrations. 

4.   Case Study Results And Analysis 

For each wind penetration, the calculation of overall industry costs and emissions 
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for each generation portfolio is repeated for 10,000 simulated future fuel and carbon 

prices, demand, and capital costs. The impacts of carbon price and different wind 

penetrations on generation portfolios are also being explored. 

4.1. Expected cost, cost uncertainty and CO2 emissions for different wind 

penetrations 

 Results for an expected carbon price of $30/tCO2 are used for illustrating the 

outputs from the tool. The expected annual generation cost, CO2 emissions and cost 

uncertainty of each of the possible thermal generation portfolios
4
 for 0% and 10% wind 

penetration scenarios are illustrated in Fig. 7. The expected generation costs are 

represented by the circles and the CO2 emissions of the corresponding portfolios are 

represented by the asterisks in the same vertical line. The efficient frontier (EF)
5
 of 

optimal portfolios representing the lowest possible expected costs and cost uncertainty 

tradeoffs is shown in the solid line. Note that not every generation portfolio is presented 

on the graphs in order to expand the resolutions of the axes and aid clarity. 

Different levels of wind penetrations can alter the optimal generation portfolios on 

the EF as shown in Fig. 7 (a) and (b). In this case, as the wind penetration increases from 

0% to 10%, the lowest cost generation portfolio changes from portfolio A (50% coal, 20% 

CCGT, 30% OCGT) to portfolio F (40% coal, 20% CCGT, 40% OCGT). While the other 

optimal portfolios on the EF (portfolios B, C, D and E) remain the same, the actual EF has 

moved diagonally upwards in the left direction which indicates higher overall expected 

industry costs but lower overall cost uncertainty.  

The figure also suggests that the influence of wind penetration level depends on 

each particular generation portfolio. With higher wind penetration, the portfolios with a 

less share of coal tend to move closer to the EF indicating that they are becoming 

relatively more favorable in comparison with the portfolios with a larger share of coal. In 

the example shown in Fig. 7, although the overall expected industry generation cost 

increases as a result of the increase in wind penetration level (recall that wind generation 

has high capital costs despite its low operating costs), the overall cost uncertainty and 

CO2 emissions can be reduced quite significantly. This occurs since wind power has no 

fuel costs and does not emit carbon emissions, therefore it is not susceptible to fuel and 

carbon price fluctuations. The impact of wind penetration on the overall costs and 

associated cost uncertainty is analysed in detail in section 4.2. 

                                                      
4
 These are the thermal generation plant portfolios for meeting net demand. 

5
 Efficient Frontier (EF) is the concept used in the Mean Variance Portfolio (MVP) theory developed by 

(Markowitz, 1952) for financial portfolio optimisation. Along the EF, expected generation costs cannot be 

reduced without increasing the cost uncertainty and vice versa. 
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(a) 

  
(b) 

Fig. 7. Expected cost, cost uncertainty and CO2 emissions of generation portfolios for an expected carbon 

price of $30/tCO2 with (a) 0% wind penetration and (b) 10% wind penetration. 

A full spectrum of possible generation costs of each portfolio can be displayed with 

a cost distribution plot. This is illustrated in Fig. 8, which shows normalised histogram 

and probability density of generation costs of some of the generation portfolios on the EF 

for 0% and 10% wind penetration for the case of an expected carbon price of $30/tCO2. 

These plots highlight the non-normality of the cost distributions and the impact of wind 

penetration on the cost spread of the portfolio. 

Since the tool employs probabilistic portfolio analysis techniques, higher statistical 

moments
6
, in addition to mean and variance, can also be considered. This is particularly 

                                                      
6
 Higher statistical moments include skewness and kurtosis. Skewness is a measure of asymmetry and 

kurtosis is a measure of the peakiness and tail fatness of a distribution. Skewness and kurtosis of a normal 

distribution are 0 and 3 respectively. 
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important given the non-normality of the cost distributions. This aspect of the tool 

addresses one of the shortcomings of the standard generation portfolio analysis, which 

assumes that portfolio cost is represented by a normal distribution, and therefore only 

considers mean and variance. In addition, the tool is capable of analysing the tail behavior 

of the cost distributions in order to anticipate the magnitude of rare but high cost 

outcomes if the downside risk is of a main concern (Vithayasrichareon and MacGill, 

2012a). 

 
Fig. 8. Generation cost distribution of some of the portfolios on the EF for an expected carbon price of 

$30/tCO2 for the cases of 0% and 10% wind penetration. 

Statistical parameters of the cost distributions of generation portfolios on or near the 

EF are shown in Table 6 for the case with 0% wind penetration and an expected carbon 

price of $30/tCO2. The table also shows the overall costs at the upper bound of the one-

sided 95% confidence interval, which in this particular example indicates the magnitude 

of rare but high cost outcomes. In this case, the skewness, kurtosis and the overall costs at 

the 95
th

 percentile among the optimal generation portfolios are not significantly different. 

However, these parameters can further enhance decision-making in choosing generation 

portfolios that suit particular risk preferences. For example, portfolio A and B have similar 

expected costs and comparable cost uncertainties but the tail characteristics of their cost 

distributions are quite different as indicated by the parameters shown in Table 6. In this 

case, portfolio B would arguably offer a more appropriate alternative to portfolio A due to 

its less heavy tail, and potentially lower maximum probable cost in the case of rare but 

high cost outcomes at the 95
th

 percentile. The anticipated maximum probable cost of 

generation portfolios at any particular confidence interval can also be determined from 

the cost distributions. 

Table 6. Statistical parameters of generation portfolios for the case without wind generation for a carbon 

price of $30/tCO2. 

Portfolio 
Mean (µ) 

($Billion) 
SD () 

($Billion) 
Skewness Kurtosis 

Cost at the 95
th

 

Percentile ($Billion) 

(A) 50% Coal, 20% CC, 30% OC 6.08 1.20 1.23 6.20 8.37 

(B) 40% Coal, 30% CC, 30% OC 6.09 1.16 1.26 5.91 8.32 

(C) 30% Coal, 40% CC, 30% OC 6.13 1.14 1.17 5.56 8.30 

(D) 30% Coal, 50% CC, 20% OC 6.18 1.13 1.15 5.45 8.33 

(E) 30% Coal, 60% CC, 10% OC 6.24 1.13 1.13 5.38 8.38 

(F) 40% Coal, 20% CC, 40% OC 6.10 1.12 1.29 6.07 8.37 
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Fig. 9 shows that, generally, as wind penetration increases, the expected cost of 

most of the generation portfolios also increase. Interestingly, however, there are some 

portfolios where expected costs decrease or increase only very slightly with higher wind 

penetration. The expected generation costs of portfolios which contain a majority of 

OCGT (greater than 60%) reduce or increase only very slightly with increasing wind 

penetration. In these cases, the variable operating costs of the generation portfolios are 

very high and, indeed, greater than the fixed costs. Hence, the reduction in variable cost 

of such portfolios with wind exceeds the increase in fixed costs resulting in a reduction in 

the overall expected cost. Since the level of carbon price affects the proportion of variable 

costs in the different portfolios, the impact of carbon pricing and wind penetration is 

examined further in the next section. 

 
Fig. 9. Expected generation cost of some selected generation portfolios for different wind penetrations for 

an expected carbon price of $30/tCO2. 

The results also suggest that increased wind penetrations can generally reduce the 

overall CO2 emissions of every generation portfolio quite considerably. For every 

generation portfolio, the reduction in CO2 emissions is around the same rate as the 

increase in wind penetration, as shown in Fig. 10. 

 
Fig. 10. Expected CO2 emissions of generation portfolios for different wind penetrations for an expected 

carbon price of $30/tCO2. 

4.2. The Impact of Carbon Pricing and Wind Penetration 

Results are also simulated for different scenarios of expected carbon prices, ranging 

from $0/tCO2 to $100/tCO2 in order to gain some high-level insights into the potential 

impact of carbon pricing and wind penetration levels on the expected industry cost, cost 
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uncertainty and CO2 emissions. 

4.2.1. Impacts on overall industry cost and cost uncertainty 

The EFs showing the expected cost and cost uncertainty tradeoffs among the 

optimal generation portfolios for the different expected carbon prices and wind 

penetrations are shown in Fig. 11. For the expected carbon price between $0 and 

$50/tCO2, it appears that increasing wind penetration would lead to higher overall 

expected cost but lower cost uncertainty. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a)                                                                              (b) 

 

As carbon price increases, the EFs move diagonally upwards, which implies an 

increase in both the overall industry expected cost and cost uncertainty. The generation 

portfolios which have a considerable share of coal are replaced by the portfolios with a 

lesser share of coal on the EF. For example, as the expected carbon price increases from 

$30 to $40/tCO2, the least expected cost generation portfolio changes from 50% coal, 

20% CCGT, 30% OCGT to 0% coal, 70% CCGT, 30% OCGT for the case of 0% wind 

penetration. Generally, an increase in the carbon price leads to an increase in the overall 

expected cost. However, for higher carbon prices, the increases in the expected cost as a 

result of increased wind penetration are smaller than when the levels of carbon price are 

moderate. It also shows that when the carbon price is high, the differences in cost 

uncertainty are more significant than the differences in expected cost as wind penetration 

increases. Interestingly, the lowest expected cost portfolios for all of the carbon prices and 

wind penetration scenarios contain a sizable share (40%) of OCGT. For higher wind 

penetrations and carbon prices, the proportion of generation shifts from coal to CCGT in 

the optimal generation portfolios. Furthermore, and as noted earlier, increased wind 

penetrations can significantly reduce future cost uncertainty. 

 

 

Fig. 11. Efficient frontiers for carbon prices of (a) $0, $10, and $20/tCO2 and (b) $30, $40 and $50/tCO2 

for different wind penetrations. 
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As previously discussed, the impact of wind penetration on the expected cost of 

generation portfolios seems to depend on the level of carbon price and the types of 

technology mix in the portfolios. Fig. 12 shows the plots of the expected industry costs of 

some of the generation portfolios for different carbon prices and for different wind 

penetrations. From the figure, the overall portfolio generation cost generally increases 

with increasing wind penetrations. However, such increases in cost, as a result of higher 

wind penetration, become smaller as the carbon price increases. When a carbon price 

reaches a certain level (threshold carbon price), the overall portfolio costs begin to 

decrease with increasing wind penetration. The level of threshold carbon price appears to 

be particularly influenced by the proportion of OCGT in the portfolio. Generally, the 

threshold carbon prices for generation portfolios with a large share of OCGT are lower 

than those with a smaller share of OCGT. For example, and as shown in Fig. 12, the 

threshold carbon price of the 40% coal, 20% CCGT and 40% OCGT portfolio is about 

Fig. 12. Expected generation cost for different carbon prices and wind penetrations for some selected 

thermal generation portfolios. 
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$55/tCO2 whereas the threshold carbon price is around $30/tCO2 for 20% coal, 20% 

CCGT and 60% OCGT portfolio. 

The plots in Fig. 12 also suggest it is possible that overall industry costs would fall 

with higher wind penetration if the carbon price is sufficiently high. Such effects were not 

evidenced in Fig. 11 since it only shows the EFs for carbon price up to $50/tCO2. EFs for 

carbon prices higher than $50/tCO2 are therefore plotted in Fig. 13 to observe this effect. 

The figure shows that when a carbon price reaches $70/tCO2, increasing wind penetration 

does not necessarily increase the overall industry costs while the cost uncertainty 

continues to decrease. As the carbon price reaches $80/tCO2, it is apparent that the EFs 

get shifted downwards with increased wind penetration implying lower expected industry 

costs and cost uncertainty. Therefore, for this case study, the value of wind generation in 

terms of reducing the overall industry cost and hedge against the cost uncertainty is 

maximised if the carbon price is greater than $70/tCO2. 

 
Fig. 13. Efficient frontiers for carbon prices of $60, $70, $80/tCO2 for different wind penetrations. 

Higher carbon prices increase the proportion of variable costs in relation to fixed 

costs of generation portfolios. With low or moderate level of carbon prices (i.e. below 

$50/tCO2), generation portfolios which consist mainly of coal and CCGT have a higher 

proportion of fixed costs than variable cost. Therefore, the increase in fixed cost of these 

portfolios is more significant than the reduction in variable cost as wind penetration 

increases. For these portfolios, the carbon price needs to be quite high in order for the 

overall cost to reduce with increasing wind penetration. The level of carbon price and the 

mix of conventional plant are, therefore, highly influential factors on the economic value 

of wind power within an electricity industry. 

4.2.2. The impact of carbon pricing on CO2 emissions 

The plot of the expected CO2 emissions of various generation portfolios for 

different carbon prices in the case of 5% wind penetration is shown in Fig. 14. Without 

modelling uncertainty, these plots of CO2 emissions typically take the form of step 

functions since reductions in CO2 emissions occur at a carbon price at which the 

operating costs of plant change with respect to each other sufficiently to change the merit 
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order of dispatch. However, when uncertainty is considered in the assessment, expected 

CO2 emissions, instead, change smoothly as carbon price increases as shown in the figure. 

The impact of carbon price on CO2 emissions varies according to the share of each 

thermal generation technology in the portfolio. Portfolios with a dominant technology in 

the mix cannot achieve significant emissions reductions regardless of carbon price. 

Portfolios with a relatively even mix across coal and CCGT have comparatively higher 

CO2 emissions at low carbon prices than predominantly gas portfolios, but the reduction 

in CO2 emissions of these portfolios tends to be more rapid with increasing carbon prices. 

These impacts are the same for higher wind penetrations but only move down the plots of 

CO2 emissions of every portfolio. 

 
Fig. 14. CO2 emissions of different generation portfolios for different carbon prices for the case of 5% wind 

penetration. 

5.   Policy Implications 

The case study results highlight a number of policy-related issues, particularly 

associating with the level of future carbon price and wind penetration, which are valuable 

for generation planning and policy decision-making in the electricity industry. The results 

suggest that there are potentially complex interactions between wind penetration levels 

and carbon pricing on the expected generation costs, associated cost uncertainties and 

CO2 emissions of different conventional plant portfolios. 

Regardless of the level of carbon price, wind generation can significantly help 

reducing the overall CO2 emissions from the electricity industry given its zero emissions. 

Hence, wind power will significantly contribute towards a future low-carbon electricity 

industry. The results also strengthen the view that wind power can play an important role 

in hedging against future fossil fuel and carbon price volatility since increasing the level 

of wind penetration will reduce the cost uncertainty of all conventional generating plant 

portfolios.  

Another important policy-related issue is the economic value of wind generation in 

future electricity industries, which was found to be primarily influenced by the level of 

carbon price and the particular portfolio of conventional generation plant within the 

electricity industry. When carbon prices are low or moderate, high wind penetrations 

increase overall expected generation costs. However, when carbon prices are high, 

increasing wind penetration can potentially reduce overall expected generation cost. This 
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is due to wind’s high capital cost but ‘free’ fuel. Hence, a sufficiently high carbon price 

would maximise the value of wind generation by reducing the overall industry generation 

cost. The extent to which wind generation affects the expected cost and exposure to risk 

for portfolios depends on their proportion of fixed and variable costs. The case study 

highlighted the synergies between OCGT and wind generation under all carbon prices, 

suggesting that peaking plants can play a valuable role in reducing the overall costs and 

cost uncertainties of generation portfolios that consist of wind generating plants.  

Although the case study data is Australian specific, the results do highlight the 

potential implications of different wind penetrations and carbon prices on the expected 

costs, associated cost uncertainties and CO2 emissions of a largely conventional coal and 

gas fueled electricity industry, which has relevance for policy decision-making for many 

electricity industries around the world. 

6.   Conclusions 

This paper demonstrates the application of a Monte Carlo simulation based 

decision-support tool to perform high level analysis of the costs, risks and greenhouse 

emissions of possible thermal generation plant portfolios in the context of varying wind 

penetrations and carbon prices.  The technique incorporates half-hourly wind data and 

electricity demand to create a Residual Load Duration Curve (RLDC) under different 

wind penetrations. A stochastic MCS extension to standard optimal generation mix 

methods and the use of portfolio-based technique allows the tool to provide estimated 

overall generation costs, associated cost uncertainty, and industry greenhouse emissions 

for different possible thermal plant portfolios and wind penetrations. As such, the tool 

extends the capabilities of some of the key methods currently used to make such portfolio 

assessments. In addition, the case study results demonstrate that the tool can provide high-

level insights into a number of policy-related issues within the electricity industry, 

particularly relating with future carbon pricing and the level of wind generation in future 

generation portfolios. 

The tool was demonstrated on a case study based on wind generation and demand 

within South Eastern Australia, and conventional coal, CCGT and OCGT generation 

options under uncertain future coal and gas prices, carbon price, electricity demand and 

plant capital costs. Historical data and independent expert opinion were used, with 

uncertainties modeled through log-normal and normal distributions. However, a great 

strength of this approach is that far more complex probability distributions can be used.        

The results suggest that wind generation can play a valuable role in reducing carbon 

emissions from the electricity industry as well as hedging against uncertain future fossil 

prices and carbon pricing policies. Increasing wind penetration does not always 

necessarily lead to an increase in the cost of generation portfolios. It has been 

demonstrated that the value of wind generation in future generation portfolios is 

influenced by two primary factors: the level of future carbon price and the particular mix 

of conventional generation technologies within the electricity industry.  

Despite the capability of the tool, there are some notable limitations and hence areas 

for potential extension. As noted earlier, the tool adopted an overall electricity industry 
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societal perspective focusing on the overall industry costs. Hence it could be extended to 

consider issues relating with restructured electricity industries by taking account 

individual investment decisions as well as incorporating the degree of risk aversion and 

risk preferences. Since the tool is based on the use of the LDC and RLDC techniques, 

they remove the chronology and hence ignore inter-temporal operational implications 

associated with different possible generation portfolios. These aspects, for example, 

include unit commitment, ramp rate constraints, and network constraints. Whilst the focus 

of the tool is on high-level portfolio assessments involving future uncertainties, there do 

appear to be some opportunities to consider some important operational issues within the 

assessment. Such limitation will be addressed is future work. Although this paper 

assessed completely new-build generation portfolios to meet future demand, the approach 

taken by the tool can incorporate existing generating plant within possible future 

portfolios in order to assess new plant investment options. 

 

Acknowledgment 

The authors would like to thank Dr. Nicholas Cutler for his help with the NEM data and Dr. Paul 

Twomey for his helpful suggestions on this paper.  

 

REFERENCES 

ACIL Tasman, 2008. Projected energy prices in selected world regions. Acil Tasman  

ACIL Tasman, 2009. Fuel resource, new entry and generation costs in the NEM. ACIL Tasman  

AEMO, 2009a. Electricity Statement of Opportunities for the National Electricity Market. Australian 

Energy Market Operator Available at http://www.aemo.com.au/planning/0410-0006.pdf. 

AEMO, 2009b. National Electricity Market (NEM) data. Australian Energy Market Operator. 

AEMO, 2010. An Introduction to Australia's National Electricity Market. Australian Energy Market 

Operator  

Awerbuch, S., 2006. Portfolio-Based Electricity Generation Planning: Policy Implications For 

Renewables And Energy Security. Mitigation and Adaptation Strategies for Global Change 11, 693-710. 

Awerbuch, S., Berger, M., 2003. Energy Security and Diversity in the EU: a Mean-Variance Portfolio 

approach. IEA Research Paper  

Awerbuch, S., Yang, S., 2008. Efficient Electricity Generating Portfolios for Europe: Maximizing 

Energy Security and Climate Change Mitigation, in: Bazilian, M., Roques, F. (Eds.), Analytical Methods 

for Energy Diversity and Security: A tribute to Shimon Awerbuch. Elsevier, London, pp. 87-115. 

Blyth, W., 2008. Use of Real Options as a Policy Analysis Tool, in: Bazilian, M., Roques, F.A. (Eds.), 

Analytical Methods for Energy Diversity and Security. Elsevier, London, pp. 69-83. 

Bushnell, J., 2010. Building Blocks: Investment in Renewable and Non-Renewable Technologies. 

Energy Institute at Haas Working Paper #202  

Chang, C.-H., Tung, Y.-K., Yang, J.-C., 1994. Monte Carlo Simulation for Correlated Variables with 

Marginal Distributions. Journal of Hydraulic Engineering 120, 313-331. 

De Jonghe, C., Delarue, E., Belmans, R., D’haeseleer, W., 2011. Determining optimal electricity 

technology mix with high level of wind power penetration. Applied Energy 88, 2231-2238. 

Delarue, E., De Jonghe, C., Belmans, R., D'Haeseleer, W., 2011. Applying portfolio theory to the 

electricity sector: Energy versus power. Energy Economics 33, 12-23. 

Doherty, R., Outhred, H., O'Malley, M., 2006. Establishing the Role That Wind Generation May Have 

in Future Generation Portfolios. IEEE Transactions on Power Systems 21, 1415-1422. 

http://www.aemo.com.au/planning/0410-0006.pdf


< Preprint submitted to Elsevier – October 2012 > 

 

23 

 

Duenas, P., Reneses, J., Barquin, J., 2011. Dealing with multi-factor uncertainty in electricity markets 

by combining Monte Carlo simulation with spatial interpolation techniques. Generation, Transmission & 

Distribution, IET 5, 323-331. 

Electricity Supply Industry Planning Council (ESIPC), 2004. Planning Council Wind Report to 

ESCOSA.  

EWEA, 2011. Wind in power: 2010 European statistics. The European Wind Energy Association  

Eydeland, A., Wolyniec, K., 2003. Energy and Power Risk Management. John Wiley & Sons, Hoboken, 

New Jersey. 

Gotham, D., Muthuraman, K., Preckel, P., Rardin, R., Ruangpattana, S., 2009. A load factor based 

mean-variance analysis for fuel diversification. Energy Economics 31, 249-256. 

Huang, Y.-H., Wu, J.-H., 2008. A portfolio risk analysis on electricity supply planning. Energy Policy 

36, 627-641. 

IEA, 2007. Climate Policy Uncertainty and Investment Risk. International Energy Agency, Paris. 

IEA, 2009a. CO2 Emissions from Fuel Combustion, 2009 Edition. International Energy Agency, Paris. 

IEA, 2009b. Electricity Information 2009. International Energy Agency, Paris. 

IEA/NEA, 2005. Projected Costs of Generating Electricity, 2005 Update. International Energy Agency, 

Paris. 

IEA/NEA, 2010. Projected Costs of Generating Electricity 2010 Edition. International Energy Agency, 

Paris. 

Jansen, J.C., Beurskens, L.W.M., Tilburg, X.V., 2006. Application of portfolio analysis to the Dutch 

generating mix. Energy research council of Netherlands ECN report C-05-100  

Joskow, P.L., 2010. Comparing the costs of intermittent and dispatchable generating technologies. 

Center for Energy and Environmental Policy Research. MIT Working paper 10-013  

MacGill, I., 2010. Electricity market design for facilitating the integration of wind energy: Experience 

and prospects with the Australian National Electricity Market. Energy Policy 38, 3180-3191. 

Madlener, R., Wenk, C., 2008. Efficient Investment Portfolios for the Swiss Electricity Supply Sector. 

FCN Working Paper No. 2/2008  

Markowitz, H., 1952. Portfolio Selection. The Journal of Finance 7, 77-91. 

Milligan, M., Lew, D., Corbus, D., Piwko, R., Miller, N., Clark, K., Jordan, G., Freeman, L., Zavadil, 

B., Schuerger, M., 2009. Large-Scale Wind Integration Studies in the United States: Preliminary Results; 

Preprint. National Renweable Energy Laboratory Available at 

http://www.osti.gov/bridge/servlets/purl/964211-NCqvvR/. 

Newcomer, A., Blumsack, S.A., Apt, J., Lave, L.B., Morgan, M.G., 2008. Short Run Effects of a Price 

on Carbon Dioxide Emissions from U.S. Electric Generators. Environmental Science & Technology 42, 

3139-3144. 

Roques, F.A., Newbery, D.M., Nuttall, W.J., 2008. Fuel mix diversification incentives in liberalized 

electricity markets: A Mean-Variance Portfolio theory approach. Energy Economics 30, 1831-1849. 

Roques, F.A., Nuttall, W.J., Newbery, D., 2006. Using Probabilistic Analysis to Value Power 

Generation Investments under Uncertainty. EPRG Working Paper 065  

Savvides, S.C., 1994. Risk Analysis in Investment Appraisal. Project Appraisal 9, 3-18. 

Smith, J.C., Milligan, M.R., DeMeo, E.A., Parsons, B., 2007. Utility Wind Integration and Operating 

Impact State of the Art. IEEE Transactions on Power Systems 22, 900-908. 

Spinney, P.J., Watkins, G.C., 1996. Monte Carlo simulation techniques and electric utility resource 

decisions. Energy Policy 24, 155-163. 

Traber, T., Kemfert, C., 2011. Gone with the wind? — Electricity market prices and incentives to invest 

in thermal power plants under increasing wind energy supply. Energy Economics 33, 249-256. 

Tuohy, A., Meibom, P., Denny, E., O'Malley, M., 2009. Unit Commitment for Systems With Significant 

Wind Penetration. IEEE Transactions on Power Systems 24, 592-601. 

http://www.osti.gov/bridge/servlets/purl/964211-NCqvvR/


< Preprint submitted to Elsevier – October 2012 > 

 

24 

 

Ummels, B.C., Gibescu, M., Pelgrum, E., Kling, W.L., Brand, A.J., 2007. Impacts of Wind Power on 

Thermal Generation Unit Commitment and Dispatch. IEEE Transactions on Energy Conversion 22, 44-51. 

Vithayasrichareon, P., MacGill, I.F., 2012a. A Monte Carlo based decision-support tool for assessing 

generation portfolios in future carbon constrained electricity industries. Energy Policy 41, 374-392. 

Vithayasrichareon, P., MacGill, I.F., 2012b. Portfolio assessments for future generation investment in 

newly industrializing countries – A case study of Thailand. Energy 44, 1044-1058. 

Yang, M., Blyth, W., 2007. Modelling Investment Risks and Uncertainties with Real Options Approach. 

International Energy Agency A working paper for an IEA book: Climate Policy Uncertainty and Investment 

Risk  
 

 


