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Breaking the solar gridlock. Potential benefits of installing concentrating solar thermal 

power at constrained locations in the NEM 

EXECUTIVE SUMMARY 

This study was undertaken to quantify the potential benefits of installing concentrating 

solar thermal power (CSP) generation at constrained network locations in the Australian 

national electricity market (NEM). The primary objectives were to identify and map 

locations where CSP could provide cost-effective network support services, quantify the 

potential effect of network support payments on the business case for CSP, and engage 

network service providers regarding the potential for utilisation of CSP as an alternative to 

network augmentation. 

 

Concentrating solar thermal power electricity generation has been in commercial 

operation at utility scale for over 20 years. By the third quarter of 2013, there was 3GW of 

installed CSP capacity worldwide and close to another 2.5GW under construction 

(SolarPACES 2013). However, despite excellent solar resources and considerable 

research and development expertise in CSP, Australia, to date, has only deployed one 

demonstration plant. The Australian market is very challenging, with a gap between 

current estimates of the levelised cost of electricity (LCOE) from CSP and likely revenue 

for grid-connected systems, of between $100/MWh for large systems, to more than 

$200/MWh for smaller systems (Lovegrove et al. 2012).  

 

Little attention has been paid to the potential for CSP systems to alleviate grid-constraints 

in electricity networks. Australia’s electricity network experienced a dramatic increase in 

capital investment over the last six years, with over $45 billion in electricity network 

infrastructure planned for the period 2010 to 2015 alone.  

 

The fact that CSP may be developed with or without storage, at a variety of scales, and 

may be hybridized – for example with biomass or natural gas – means grid integration is 

relatively straightforward, in comparison with some other renewable energy options. 

Further, the potential network services offered by CSP are both reliable and flexible.  

 

The central premise of this study is that rather than continuing to invest, by default, in 

increasing the capacity of a transmission and distribution network system designed for 

centralised power generation to meet growing peak demand, facilitating distributed 

generation or demand reduction options may provide cost effective alternatives. 

Increasing the deployment of these decentralised energy options, and CSP in particular, 

could concurrently enable greater deployment of renewable energy in the electricity 

system, and reduce total system greenhouse gas emissions.  

 

Methodology 
The project had four main components, as shown in Figure 1. Task 1 was to quantify and 

map potentially avoidable network investment, using the Dynamic Avoidable Network 

Costs Evaluation model (DANCE) developed by the Institute for Sustainable Futures (ISF) 

at the University of Technology, Sydney, according to location and expected constraint 

year. The main inputs are data about proposed network investment, forecast electricity 

demand, peak day demand profiles, and firm capacity at constrained assets in the 

electricity network. These are mapped for the distribution areas or connection points 

where distributed energy could potentially alleviate the constraint.  
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power at constrained locations in the NEM 

Figure 1: Methodology overview 

 

 

Task 2 was to quantify the likelihood of CSP being able to generate during peak load 

periods at different locations in the NEM. The model, developed by the Centre for Energy 

and Environmental Markets (CEEM) at the University of New South Wales, assigns an 

indicative firm capacity (IFC) to each location, essentially an estimate of the probability 

that CSP would be generating during the most acute summer and winter peak network 

constraint periods. The IFC is calculated by selecting twenty-one of the highest peak 

demand events for each state in each of the defined peak time periods during 2009, 2010, 

and 2011. The model examined whether CSP with different amounts of storage, from 0 to 

15 hours, would have been generating during the peak event. The IFC assigned at each 

location is the average value of modelled output for the specific plant configuration for the 

defined period (for example, summer afternoon). 

 

Task 3 integrates the output from Tasks 1 and 2 to identify locations where CSP may 

provide cost effective network support, and identifies appropriate plant capacities and 

configurations. For modelling purposes, CSP is defined as being able to meet a network 

constraint when the IFC at the location for the time and season is above 80%, and a CSP 

plant of capacity equal to the maximum projected network constraint could be physically 

connected at the appropriate connection point. The cost effectiveness of CSP replacing 

network augmentation is assessed by comparing the CSP plant’s LCOE to potential 

revenue, including a calculated network support payment. Different CSP plant 

configurations are assessed, ranging from the minimum size plant to alleviate the 

constraint, to the maximum size able to be connected without requiring network 

augmentation to export energy. The configurations include the assessment of varying 

amounts of thermal energy storage (TES). A reduction of 4% per year was included in the 

modelling of CSP capital costs to allow for the projected learning curve for CSP, a mid-

range amongst estimates for likely cost reduction. 

 

The proposed network investment is reduced by 20% prior to calculating the network 

support payment, reflecting the fact that electricity generation (of any type) cannot 

replicate the certainty offered by wires and poles. This also means the total societal cost 

of meeting network constraints is reduced by 20%. Note, however, that the comparison of 

CSP installation to other non-network solutions is not considered in this study.  

 

TASK 3  
Map CSP potential to meet constraints, 

and the resultant cost benefit or gap 

TASK 1 
Quantify and map potentially 

avoidable network investment (ISF) 

TASK 2 
Model and map of indicative firm 

capacity (CEEM) 

TASK 4  
One case study per state 
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Task 4 involved undertaking five case studies at constrained locations in Queensland, 

New South Wales, Victoria and South Australia, in consultation with the relevant network 

service provider.  

 

Results – potentially avoidable network investment 

A total of 92 constraints, or constrained areas, were identified in non-metropolitan areas in 

the NEM during this research, either from public network planning documents or 

information supplied directly by the network operators. In two states, Queensland and 

South Australia, constraints were only examined in areas with direct normal insolation 

(DNI) likely to be sufficient for CSP to operate economically, while in Victoria and New 

South Wales all non-metropolitan constraints were mapped where possible. The high 

number of constraints in Victoria reflects the fact that use of data from public information 

allowed easy inclusion of all the identified non-metropolitan constraints, so low DNI areas 

were included, and is not because the network is more constrained.  

 

Approximately $0.8 billion of potentially avoidable network augmentation has been 

identified across the NEM in areas with suitable solar irradiance for installation of CSP 

(defined here as average DNI which is more than 21 MJ/m2/day). This is broken down by 

time period and state in Figure 2. There is a further $0.5 billion of potentially avoidable 

network expenditure which has been identified in areas with DNI below 21 MJ/m2/day.  

 

Most of the investment occurs in the period from 2016 onwards. This reflects the fact that 

maximum demand forecasts were reduced significantly during 2012, with the result that 

proposed growth-related augmentation has in many cases been deferred. It is important to 

stress that proposed investment changes as demand forecasts change, as different non-

network solutions come into play, and as reliability criteria are adjusted. Thus the 

investment identified here is a snapshot of expectations at the present time. 

 

Figure 2: Potentially avoidable network investment in areas with average 
daily DNI > 21 MJ/m2 
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Winter evening (10 hours storage) Winter evening (0 hours storage) 

Summer afternoon (5 hrs storage) Summer afternoon (10 hrs storage) 

Results – indicative firm capacity 
The modelling showed that IFCs in excess of 80% can be achieved in all seasons and 

most locations. Very little storage is required to reliably meet summer afternoon and 

evening peaks in most areas of the NEM. In winter, IFC is less due to the lower solar 

resource, but high IFCs can still be reached by increasing storage levels.  

 

Figure 3: Indicative firm capacity summer afternoon (5 and 10 hours storage)  

Figure 4: Indicative firm capacity winter evening (0 and 10 hours storage) 
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Figure 3 shows two plots of IFC across the NEM during the summer afternoon peak, with 

5 and 10 hours of storage. The plots have a number of common features. First, coastal 

areas have lower values due to the weather systems that generally prevail on the coast. 

This is also true for tropical northern Queensland, where summers include monsoonal 

impacts and periods of high rainfall. In winter, Queensland sees higher IFCs because of 

the absence of monsoonal weather patterns. Second, we find that IFCs are somewhat 

higher the further west the plant is located (e.g. northern South Australia). 

 

Results for winter evening (the ‘worst case’ for CSP) are shown in Figure 4. The plot on 

the left is an extreme case: winter evening results for a plant with no TES. The band 

across the map shows locations where IFCs are approaching zero simultaneously, as 

sunset falls within the period of interest (5 to 8pm on winter evenings). Further north on 

the plot, IFC increases because sunset occurs later. The plot on the right shows the effect 

of increasing storage to 10 hours, which results in IFCs of 80% and above in most areas.  

 

The CSP model simulated plant output using a simple dispatch strategy, with generation 

starting at 12pm and continuing as long as possible. In practice, a more sophisticated 

dispatch strategy would be employed to meet any obligations under a network support 

contract, as well as considering solar forecasts, demand forecasts, and prevailing market 

prices. This could achieve much better availability than indicated by the IFC. 

 

Results – cost effects of CSP replacing network augmentation 

The results indicate that CSP could avoid the need for network augmentation in 72% of 

the constrained areas examined, i.e. in 48 locations. Altogether, 93 constraints, or 

constrained areas, were considered, of which 67 had sufficient information to make a 

determination. If constraints were limited to only those with solar resources better than 21 

MJ/m2/day DNI, CSP could avoid the need for augmentation at 94% of locations.  

 

Victoria has the lowest percentage of locations where CSP can avoid the requirement for 

augmentation, essentially because sites with average DNI as low as 13.5 MJ/m2/day have 

been included in the overall analysis. The lowest DNI for the sites examined in other 

states respectively is 20 (QLD), 19.8 (NSW) and 18.9 (SA). 

 

For each location where CSP could indicatively meet the constraint, cost benefit 

calculations were undertaken. The results for each state are shown in Table 1. Overall, 

CSP installation was found to have a positive cost benefit in 25% of the constrained 

locations examined (where DNI > 21 MJ/m2/day), meaning that a CSP plant operating 

under a network support contract would have a commercially viable business case, while 

the cost to energy consumers of meeting constraints is reduced by 20% relative to 

traditional network augmentation. An additional 36% of constrained locations come close 

to cost-effectiveness, with a cost gap of less than $20 (that is, overall cost benefit was 

between -$20 and $0 per MWh), as shown in Table 2.  

 

Altogether, installation of 533MW of CSP at grid constrained locations was found to be 

cost effective during the next 10 years, and an additional 125MW had a cost benefit 

between -$20 and $0 per MWh. Across all states, the average plant was 40MW, with 10 

hours storage, and the average and lowest LCOE were $202/MWh and $111/MWh 

respectively.  
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Table 1: Proportion of grid constrained locations where CSP could 
indicatively avoid the need for network augmentation 

  QLD NSW VIC SA 
All 

states 

Number of locations where CSP could indicatively 
avoid the need for network augmentation 

20 7 17 4 48 

Proportion of all locations  87% 88% 53% 100% 72% 

Proportion of locations with DNI > 21 MJ/m2/day  90% 100% 100% 100% 94% 

Note: Excludes locations with insufficient information 

 

Table 2: Cost benefit of CSP installed at grid constrained locations  

 QLD NSW VIC SA All states 

Proportion of cost effective sites  30% 0% 14% 67% 25% 

Proportion of sites cost benefit > -$20/MWh 45% 17% 14% 67% 39% 

Note: Only sites with DNI >21 MJ/m2/day are included 

 

The network support payment was not found to be a crucial factor to CSP plant viability in 

most locations, although it certainly contributed to the overall cost effectiveness, and 

made a major contribution in some locations. As the optimisation process generally 

increased the plant size to the maximum able to be connected, this had the effect of 

diluting the contribution from the network payment when measured as a value per MWh of 

plant output. The largest network support payment contribution calculated was $134/MWh 

(83% of the LCOE at that site), and the average $15/MWh (8% of LCOE). The average 

value of the network support payment at cost effective sites was somewhat higher, at 

$31/MWh., contributing an average of 20% of the LCOE.  

 

Results – case studies 

Five case studies were undertaken, at locations in each NEM state other than Tasmania, 

in consultation with Network Service Providers. The results are summarised in Table 3. 

 

Overall, the study found that CSP installed at the case study locations would be able to 

delay, or avoid entirely, the planned network augmentation in all cases, and provide 

similar reliability to a traditional network solution in four of the five cases.  

 

Strategies to achieve sufficient reliability varied according to the network requirements at 

each location. In four locations (two in Queensland, one in New South Wales and one in 

South Australia), the gas boiler normally installed as part of a CSP plant was modelled as 

oversized in order to provide emergency backup. Network requirements were to provide 

on–demand operation at these locations, and there were periods in each year where CSP 

would not provide sufficient certainty. It is expected that total gas use would be minimal, 
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as the purpose is to provide emergency backup in the event that required network support 

falls outside of a period when the CSP is generating.  

 

Table 3: Case study overview 

 
Network 
operator 

Optimum 
plant  

MW / TES 

Proposed 
augmentation 
year and cost 

Network 
payment 
$/MWh 

Net 
benefit 
$/MWh 

The Riverland, SA 
(line replacement) 

ElectraNet 40MW, 5hrs 2022, $226m $110 $144 

The Riverland  SA 
(line upgrade) 

ElectraNet 130MW, 5hrs 2022, $10m $1 $60 

Charleville, Qld Ergon 20MW, 5hrs 2022, $70m $6 $16 

Wemen, Vic Powercor 77MW, 5hrs 2021, $12m $3 $23 

Gunnedah supply, 
NSW (CSP at 
Moree) 

Transgrid 50 MW, 5hrs 2019, $24 $9 -$13 

Millchester, Qld Ergon 40MW, 15hrs 2017, $46m $16 -$29 

Gunnedah supply, 
NSW (CSP at 
Gunnedah) 

Transgrid 50 MW, 5hrs 2019, $30m $13 -$39 

 

In the fifth location (Wemen in Victoria), CSP could not provide certainty of generation by 

the end of the forecast period, as there could be a capacity shortfall for up to 100% of the 

time during the summer months, and CSP is not suitable for such constant generation. 

The CSP could reduce the likelihood of a capacity shortfall by 72%, which may be 

sufficient to defer the investment indefinitely. However, the CSP plant was found to have a 

positive cost benefit at this location without a network support payment. 

 

The network support payment was not generally found to be a decisive factor in the case 

study economic outcomes, other than in the Riverland, where the network payment could 

provide $110/MWh if the investment from the higher cost augmentation was transferred to 

the CSP. In other cases, the value varied from $1/MWh to $16/MWh.  

 

Conclusions and recommendations 

This study confirms that CSP can provide a viable alternative to traditional network 

augmentation solutions in addressing electricity grid constraints. It supports the 

hypothesis that CSP has potential to play a significant role in optimising costs in electricity 

networks with high levels of renewable energy generation capacity.  The study did not 

extend to other types of distributed energy as an alternative to network augmentation, and 

further research and an options analysis would be useful.  

 

This study identified $0.8 billion of potentially avoidable network investment, and 533MW 

of cost effective CSP which could be installed at grid constrained locations in the next 10 
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years. Based on the current emissions intensity of electricity generation in each state, this 

would reduce greenhouse emissions by an estimated 1.9 million tonnes per year. 

 

Network support payments can play a role in increasing the cost effectiveness of CSP, 

and such installations can avoid or defer the requirement for network augmentation. The 

potential for such cost effective installations will change as network forecasts are 

modified. If CSP and other distributed energy are to compete with traditional network 

solutions, the availability and accessibility of network information is likely to require 

improvement. The mapping outputs of this project provide an example of how information 

could be produced and disseminated to increase industry engagement and drive 

innovation and investment in developing non-network opportunities to defer augmentation. 

These outputs can be found at: www.breakingthesolargridlock.net. 

 

A key requirement is for network data to be harmonised, and rules established to enable 

project proponents easier access to timely data, in formats that support scenario 

modelling. The Australian Energy Market Commission (AEMC) noted the value of more 

transparent network planning processes, including data access, in their 2012 review 

(Australian Energy Market Commission 2012). 

 

While Regulatory Investment tests have provided consistency and rigour in economic 

analysis of network investments, adjustments may be required in order for the benefits of 

CSP (and other forms of distributed generation) to be considered appropriately and to 

enable greater scope for private investment and innovation.   

 

The study supports the contention that CSP can play an important and economically 

efficient role in Australia’s electricity system. 

http://breakingthesolargridlock.net/
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1 INTRODUCTION 

This project was undertaken to quantify the potential benefits from installing concentrating 

solar thermal power (CSP) generation at constrained network locations in the Australian 

National Electricity Market (NEM). The four primary objectives were to: 

 Quantify the potential economic benefits; 

 Identify and map locations where CSP could provide cost-effective network 

support services; 

 Undertake four case studies, one per state, to further explore the economic and 

network benefits of CSP in promising locations; and 

 Engage network service providers regarding the potential for utilisation of CSP as 

an alternative to network augmentation, its potential costs and benefits, how CSP 

plant configuration could address issues of network reliability, and the implications 

for reform of network reliability standards. 

 

The project was undertaken with funding from the Australian Renewable Energy Agency 

(ARENA), electricity network services provider Ergon Energy Ltd (Ergon Energy) and the 

Australian Solar Thermal Energy Association (AUSTELA).  The project was led by the 

Institute for Sustainable Futures (ISF) at the University of Technology, Sydney with the 

Centre for Energy and Environmental Markets (CEEM) at the University of New South 

Wales and AUSTELA.  Assistance and advice was provided by IT Power (Australia) Pty 

Limited. Ergon Energy is a major project partner and has collaborated extensively on the 

project, as well as providing funding support. Essential Energy and Transgrid (New South 

Wales), ElectraNet and SA Power Networks (South Australia), and SP AusNet and 

Powercor (Victoria) have all collaborated on the project and assisted with data provision.  

 

The study is intended to provide analysis and perspectives on the potential value of CSP 

generation in electricity network development to both accelerate the implementation of 

CSP systems, where the economics prove to be favourable, and to assist network service 

providers to evaluate strategies utilising distributed renewable energy generation to meet 

current and future constraints in Australia’s electricity networks. 

 

The original focus of this project was network constraints in the distribution system, 

indicated by the Australian Government’s Energy White Paper in 2012 as the largest 

proportion of network investment required in Australia in the period to 2020 and a major 

driver of electricity cost increases in recent years. However, following analysis of network 

constraint data, revised demand forecasts from the Australian Energy Market Operation 

(AEMO), and advice from distribution network operators in New South Wales and South 

Australia, the examination was extended to include transmission constraints in New South 

Wales and South Australia. 

 

The study did not consider other types of renewable or non-renewable distributed 

generation as an alternative to network augmentation, as this was outside the scope of 

the project. However, further research and a options analysis of distributed energy as an 

alternative to network augmentation would be very useful.  
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1.1 BACKGROUND  

CSP electricity generation has been in commercial operation at utility scale for over 20 

years. Installed capacity of CSP has accelerated in recent years, with Spain and the USA 

being the leading markets.  Major developments are now underway in India, South Africa, 

the Middle East and Northern Africa, Israel and China. By the third quarter of 2013, there 

was 3GW of installed CSP capacity worldwide and close to another 2.5GW under 

construction (SolarPACES 2013). Analysis suggests sustained rates of growth in CSP 

development between 20% and 40% per annum are likely between 2012 and 2030 

(Lovegrove et al. 2012). 

 

Despite excellent solar resources and considerable research and development expertise 

in CSP, Australia, to date, has only deployed one demonstration plant. The Australian 

market is very challenging, with a gap between current estimates of the levelised costs of 

electricity (LCOE) from CSP and current average wholesale electricity and renewable 

energy certificate prices. Estimates of this cost gap vary from $100/MWh for large 

systems on the NEM to more than $200/MWh for smaller systems (Lovegrove et al. 

2012). Although CSP systems, due to their ability to store and dispatch power at times of 

high demand, have potential to achieve higher revenues than non-dispatchable renewable 

energy types, market structures and regulation limit the ability of CSP projects to monetise 

this potential revenue increment (Lovegrove et al, 2012). 

 

Little attention has been paid to the potential for CSP systems to alleviate grid-constraints 

in electricity networks. Australia’s electricity network experienced a dramatic increase in 

capital investment over the last six years, with over $45 billion in electricity network 

infrastructure planned for the period 2010 to 2015 alone, as shown in Figure 5. Almost 

one third of this investment is motivated by the need to meet expected growth in peak 

electrical demand (Dunstan et al. 2011).  

 

Figure 5: Electricity network capital expenditure (transmission & 
distribution) by state, 2006-2015  

 

Source: Langham, Dunstan, & Mohr, 2011b 
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The central premise of this study is that rather than continuing to invest, by default, in 

increasing the capacity of a transmission and distribution network system designed for 

centralised power generation to meet growing peak demand, distributed generation, or 

demand reduction options, may provide cost effective alternatives. CSP in particular, 

providing dispatchable generation and thermal energy storage, offers potential to provide 

network support in addition to the broader benefits of carbon emissions reduction 

available with other renewable energy generation types. Network expenditure currently 

accounts for around half of the average electricity bill, and the use of cost effective 

distributed energy options could reduce network expenditure significantly.  

 

Increasing the consideration of distributed energy, and CSP in particular, as an alternative 

to network augmentation may also enable greater total deployment of renewable energy 

in the electricity system, reducing total system greenhouse gas emissions. 

 

CSP plants are highly scalable, with commercial plants ranging from 5 to 390MW in 

operation or under construction. CSP output, by its nature, aligns well with Australia’s 

dominant summer peak demand. CSP systems have inherent thermal inertia from the 

mass of receivers and the volume of high temperature heat transfer fluid that is in 

circulation during operation as well as other high temperature components, such as heat 

exchangers. Even without the construction of dedicated thermal energy stores, the energy 

stored in these elements is sufficient to allow the system to keep generating for 15 to 30 

minutes after loss of sun. Adding purpose-built thermal energy storage (TES), a relatively 

mature technology now deployed in the majority of new CSP developments (Lovegrove et 

al, 2012), increases a CSP plant’s capacity factor and dispatchability, and allows CSP 

plants to deliver power when it is needed outside of daylight hours, and in peak network or 

wholesale market periods that do not directly correspond to peak solar radiation, such as 

winter evening peak times. In addition, CSP systems, as a rule, employ turbines coupled 

to synchronous generators of the same type as coal-fired power stations. Thus, they are 

able to provide ancillary services such as voltage and frequency support, usually 

associated with fossil-fired stations. 

 

The fact that CSP may be developed with or without storage, at a variety of scales, and 

may be hybridized – for example with biomass or natural gas – means that grid integration 

is relatively straightforward, by comparison, with some other renewable energy options, 

and the potential network services offered by CSP systems are both reliable and flexible. 

In Australia, CSP hybrid plants already exist with coal-fired power stations with Figure 6 

showing the first reference plant at Liddel power station in the Hunter Valley, New South 

Wales. 

 

Understanding this potential value is important to assist evidence-based analysis of the 

need and justification for policy support for local CSP demonstration, scale-up, and further 

research and development. 

 

The Institute for Sustainable Futures has previously developed a model (called Dynamic 

Avoidable Network Costs Evaluation, or DANCE) to estimate the potential avoidable 

network expenditure as part of the Intelligent Grid Research Program (Langham, Dunstan 

& Mohr 2011), and subsequently applied the model in urban Victoria (Langham et al. 

2011). The model quantifies the planned network expenditure that is related to peak 
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demand growth, maps it to geographic locations in the network, and calculates the 

expenditure in terms of $/kVA/year. The purpose is to inform consideration of whether 

distributed energy can provide a more cost effective means to achieve adequate 

performance in Australia’s electricity network. 

 

Figure 6: CSP hybrid plant at Liddel power station, Hunter Valley, Australia.  

 

Source: Juergen Peterseim 

 

This project extends the quantification of network constraints using the DANCE model to 

areas of the NEM suitable for CSP generation, and integrates this with modelling of 

indicative firm capacity (IFC) from CSP generation in different seasons under real world 

weather conditions. This enables assessment of the potential for CSP to provide reliable 

network support, and quantify the potential value of network support to the CSP business 

case. 
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2 METHODOLOGY  

2.1 OVERVIEW   

The project had four main components, as shown in Figure 7.  

 

Figure 7: Methodology overview 

 

 

Task 1, conducted by the Institute for Sustainable Futures (ISF), quantified and mapped 

potentially avoidable network investment, using the DANCE model, according to location 

and expected constraint year. The main inputs are data on proposed network investment, 

forecast electricity demand, peak day demand profiles, and firm capacity at constrained 

assets in the electricity network. These are mapped for the distribution areas or 

connection points where distributed energy could potentially alleviate the constraint. The 

primary DANCE model outputs are maps displaying the characteristics of the constraint 

and the value of distribution zone and upstream transmission investment where load 

reduction or embedded generation has the potential to alleviate the need for 

augmentation. The DANCE model outputs are provided in Geographic Information System 

(GIS) map and spreadsheet form.  

 

Task 2, conducted by the Centre for Energy and Environmental Markets (CEEM), 

quantifies the likelihood of CSP being able to generate during peak load periods at 

different locations in the NEM. The model, developed by CEEM, assigns an IFC to each 

location, essentially an estimate of the probability that CSP would be generating during 

the key summer and winter peak network constraint periods. The IFC is calculated by 

selecting a number of the highest peak demand events for each state in each of the 

TASK 3  
Map CSP potential to meet 

constraints, and the resultant 
cost benefit or gap 

TASK 1 
Quantify and map 

potentially avoidable 
network investment (ISF) 

TASK 2 
Model and map of 

indicative firm capacity 
(CEEM) 

TASK 4  
One case study per state 
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defined peak time periods during 2009, 2010 and 2011. The model examined whether 

CSP with different amounts of storage (from 0 to 15 hours) at each location would have 

been generating during the peak event. The IFC assigned at each location is the average 

value of modelled output for that plant configuration for the defined period (for example, 

summer afternoon). The IFC at a constrained network location is the average value of the 

CSP plant’s output at that location for the 21 highest demand events that occurred during 

the peak period associated with the network constraint.  

 

Task 3 integrates the output from Task 1 and Task 2 to identify areas where CSP may 

provide cost effective network support, and appropriate capacities and plant 

configurations to achieve this. For modelling purposes, CSP is defined as being able to 

meet a network constraint when: 

1. The IFC at the location, calculated in Task 2, is above 80%; and 

2. A CSP plant of installed capacity equal to the 10 year projected magnitude of the 

network constraint could be physically connected at that connection point.  

 

The cost effectiveness of CSP replacing network augmentation is assessed by calculating 

an overall cost benefit for the CSP, by comparing the CSP plant’s LCOE to potential 

revenue, including a calculated network support payment. Different CSP plant 

configurations are assessed, ranging from the minimum size (MWe) plant to alleviate the 

constraint to the maximum size able to be connected without requiring network 

augmentation to export energy. Varying amounts of storage are considered. The 

modelling outputs from Task 3 are the cost benefit or cost gap for the optimum, smallest 

and largest CSP plants that may be connected to meet the constraint.  

 

The methodology builds in cost effectiveness compared to traditional network 

augmentation, as the proposed investment is reduced by 20% prior to calculating any 

potential network support payments. However, the comparison of CSP installation to other 

non-network solutions is not considered here, although this is likely to be an aspect of 

regulatory testing prior to approval of network support payments.  

 

Task 4 includes one case study per mainland NEM state (that is, excluding Tasmania), 

with locations selected on the basis of the cost benefit identified in Task 3, and in 

consultation with the relevant network service provider. Each case study examines 

whether CSP could have met the network constraint in previous years by comparing the 

electricity demand profile to weather and solar resource records and modelling CSP plant 

dispatch to meet the constraint. The case study then examines the business case by 

doing a detailed comparison of dispatch strategy and historical prices. As part of the 

development of the research, the outputs and assumptions have been workshopped with 

the relevant network service provider.  

 

Further details of the methodology are given in Sections 2.2 to 2.4.5, and details of the 

models are given in Appendix 1 and Appendix 2.  
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2.2 QUANTIFYING AVOIDABLE NETWORK INVESTMENT  

Not all investment in network capital expenditure is avoidable. Approximately two thirds of 

network capital expenditure from 2010 to 2015 is associated with replacing ageing 

infrastructure, connecting new customers, and other non-system expenses (Dunstan et al. 

2011). However, the remaining third that is driven by augmentation of constrained network 

assets, primarily due to growth in peak demand, is considered ‘potentially avoidable’ 

through the utilisation of ‘distributed’ generation or demand reduction options.  

 

While past versions of the DANCE model have quantified and mapped the ‘growth-related’ 

investment only, the definition of potentially avoidable constraints (and associated 

investment) for this work is widened to include meeting reliability standards, which 

frequently lead to the installation of new network infrastructure, and the provision of 

voltage support. 

 

For CSP in particular, the study examines whether potential network support payments 

(capped at 80% of the value of supplying additional network capacity through 

conventional network expenditure) can bridge the cost gap to make appropriate CSP 

projects in those locations financially viable. It is assumed that CSP would provide a long-

term alternative to augmentation, so that augmentation is effectively avoided rather than 

deferred. This could allow a high proportion of the proposed investment to be considered 

for the network support payment. 

 

An overview of the DANCE model is given below, with a detailed description in Appendix 

1.  

 

2.2.1 DANCE model inputs and outputs  

The DANCE model uses data on constrained assets in the electricity network to map 

potentially avoidable investment by location. However, as only incomplete datasets were 

available for many constrained assets, much of the modelling task is to extrapolate from a 

minimum data set. DANCE thus uses the simplest inputs possible to reconstruct, with 

reasonable accuracy, complex variations in electrical demand throughout the year, to 

enable calculation of potentially avoidable electricity network investment over time and 

space.  

 

The outputs from the model are: 

● Proposed network investment related to growth, voltage support, or Security of 

Supply requirements, by asset, location and year; 

● Potentially avoidable investment presented in terms of the ADV ($/kVA/year);1 

● The avoided cost and net present value (NPV) of the investment for the asset 

itself, and of upstream linked assets; 

● Available capacity by year; 

● Description of the constraint, including type (for example, growth), season, 

maximum and minimum MW required (commissioning year and 10 years on), and 

asset owner; 

                                                
1
 Requires hourly data (or synthesised hourly data) to calculate 
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● The estimated maximum generator size (MW) that could be connected; and 

● The support required where the constraint is due to a requirement to change to n-1 

Security of Supply conditions. 

 

These outputs are mapped (where locations are available) using Google Earth. The 

following are calculated, and are available in the spreadsheet output: 

● Number of hours above the network constraint value by the peak day, number of 

days per month, the year in which network investment would have occurred, and 

10 years after the investment would have occurred (called ‘worst year’ or ‘year 

10’);2 

● A daily profile for the winter and summer peak day;2 and 

● The average annual growth rate of electricity demand at the asset. 

 

The model inputs are listed below, with an indication of whether they are required: 

● Constrained distribution zone substations (ZS), terminal stations (TS) or bulk 

supply points (BSP):  

o Name and GIS co-ordinates (required); 

o Proposed investment for a network solution, and proposed commissioning 

year (required); 

o Nameplate capacity, n-1 capacity (if applicable), and secure capacity (or 

support needed); 

o Summer and winter peak demand forecast in MVA; 

o Historic hourly load data for a recent year, where available. This can be 

estimated with monthly values and two daily demand curves, for a summer 

and a winter peak day. See Appendix 1 for details; and 

o Where the constraint is due to a requirement to change to n-1 Security of 

Supply conditions, the support required. 

● Constrained sub-transmission lines: 

o Proposed investment for a network solution, and proposed commissioning 

year (required); 

o Details and GIS co-ordinates of ZS, TS or BSP supplied by the line 

(required); and 

o Secure capacity of the asset, or the network support needed. 

 

If components of the listed data are unavailable, omission will generally restrict the 

outputs from the model. For example, any outputs related to daily profiles or hours above 

the constraint load requires hourly demand data for the year (or sufficient proxy data that 

the model may estimate the yearly load profile).  

 

In addition to the network data inputs listed, there are economic variables used to 

undertake the calculations. These are: 

● Weighted average cost of capital (WACC) – a figure of 6.4% per annum ‘real 

vanilla WACC’ is used for all states, as discussed in Section 2.2.3; 

                                                
2
 Requires hourly data (or synthesised hourly data) to calculate 
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● Depreciation value of network assets – a default of 2.5% is used, assuming a 

linear depreciation over a 40 year economic lifetime; and 

● Discount rate – a default value is of 7% is used. 

 

2.2.2 Key calculations in DANCE  

2.2.2.1  Annual deferral value 

If a non-network investment (e.g. a CSP plant) can effectively defer investment in 

upgrading a network asset, then there is a financial benefit to the network associated with 

that deferral. By assuming the asset is unconstrained in the year prior to commissioning 

the proposed augmentation, the value of support required each year (in $/kVA) can be 

calculated from the annual peak demand forecast and investment information. In all 

situations other than the requirement to change to n-1 Security of Supply conditions, the 

annual deferral value (ADV) in year Y in $/kVA/year is: 

 

   ( )   
       (         )           ⁄

(      )      
 

Where:  

INVA is the Investment Amount that is occurring for the asset, 

WACC is the Weighted Average Cost of Capital,  

DEPR is the Depreciation Rate, 

AVGR is the Average Growth Rate in demand in year Y,  

DISR is the Discount Rate and 

INVY is the Commissioning Year.  

 

In the real world, there are instances where the asset is already constrained for several 

years prior to commissioning the network augmentation, and the network operator has 

advised what support is required in year 1, year 2, etc. In this case, the data is adjusted so 

the model will output the specified support value, by making the demand in the year prior 

to commissioning equal to the demand in the commissioning year, less the required 

support.  

 

Note the ADV is zero if either the average growth rate is not positive, or the year under 

consideration is after the commissioning year of the network augmentation, as it is 

assumed that by then the investment has occurred.  

 

In locations where the constraint is not due to growth, but due to the requirement to 

change to n-1 Security of Supply criteria, the ADV is calculated with reference to the 

support required rather than to the average growth rate.  

 

In general, the requirement to move to an n-1 Security of Supply criteria results from 

demand exceeding 15MVA. When the support required is more than 15MVA above the 

forecast demand in the investment year, the ADV in year Y in $/kVA/year is: 
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   ( )   
       (         )          ⁄

(      )      
 

 

When the demand in the investment year is less than 15MVA greater than the support 

required, the ADV is: 

 

   ( )   
       (         )       (                        )⁄

(      )      
 

 

Where: 

INVA is the Investment Amount that is occurring for the asset, 

WACC is the Weighted Average Cost of Capital,  

SUP is the Support required, 

DEPR is the Depreciation Rate, 

DISR is the Discount Rate and 

INVY is the Commissioning Year.  

 

2.2.2.2  Net Present Value of a constraint 

Net present value (NPV) of proposed investment is calculated for a chosen year by 

summing the NPV values of potential network payments from the invest year to 10 years 

after the investment year, that is:  

 

   ( )   
(         )    

(      )    
 

Where: 

WACC is the Weighted Average Cost of Capital,  

DEPR is the Depreciation Rate, 

INVA is the Investment Amount (in $ millions) that is planned by the network at 

that location, 

DISR is the Discount Rate and 

CY is the Current Year (as specified in the global inputs to the model).  

 

2.2.2.3  Minimum / maximum constraint & maximum generator size 

In all cases other than the requirement to provide n-1 Security of Supply, the minimum 

constraint is the amount by which the electricity network asset is forecast to exceed the 

investment trigger point (ITP) in the commissioning year, which is effectively the amount 

of network support which is required. The ITP is defined as the secure capacity of the 

network asset (if that is available), or the forecast demand in the commissioning year 

minus the average growth rate in that year. The maximum constraint is the forecast 

electricity demand in year 10, minus the ITP.  

 



 INSTITUTE FOR SUSTAINABLE FUTURES  

 19 

 

2013 

Breaking the solar gridlock. Potential benefits of installing concentrating solar thermal 

power at constrained locations in the NEM 

Where the constraint results from the requirement to provide n-1 Security of Supply, the 

minimum constraint is set as the support required, as advised by the network operator.  

 

The maximum constraint is set as the support required, plus positive growth forecast 

between the investment year and the end of the period. Where growth is zero of negative, 

the maximum constraint is set at the support required, and so equals the minimum 

constraint.  

 

The maximum generator which can be connected to the electricity network asset is taken 

as the nameplate capacity, unless otherwise advised by the network operator.  

 

2.2.3 Weighted average cost of capital 

The WACC values for network operator investment used in this analysis were taken from 

the Australian Energy Regulator (AER) 2009 determination (Australian Energy Regulator 

2009).  

 

A different WACC may be applied to each NEM state distribution network service provider 

(DNSP) and transmission network service provider (TNSP) over each five year (minimum) 

regulatory period.  Owing to the staggered periodicity of NEM state regulatory periods, a 

representative WACC for each NEM state DNSP and TNSP was calculated using a time 

weighted average of the appropriate AER published nominal ‘vanilla’ WACC, over the 

study period 2014/15 to 2022/23. Note that owing to the alignment of the regulatory 

periods in 2014/15, all DNSPs and TNSPs will effectively have the same WACC for this 

study if a time weighted average approach is used. A start year of 2014/15 was selected, 

as this is the earliest year that a CSP plant is likely to be commissioned with the purpose 

of alleviating a network constraint.  

 

The nominal network service provider WACC figures were then adjusted to real ‘vanilla’ 

WACC figures by subtracting the average of the mid-year 2013 to mid-year 2015, Reserve 

Bank of Australia inflation projection (Reserve Bank of Australia 2013), shown in Table 4. 

It was assumed the AER held the 2009 WACC determination constant for the study 

period, and post-tax WACC figures were used in the analysis. 

 

Table 4: Underlying inflation 2013 - 2015 

 2013 2014 2015 

 Jun-13 Dec-13 Jun-14 Dec-14 Jun-15 

6 monthly (%) 2.25 2.25 2.5 2.5 2.5 

Annual (%) 2.25 2.5 2.5 

Av. all years (%) 2.42 

Source: Reserve Bank of Australia, 2013, Table 6.1 
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The resulting WACC for use for the network operators for this analysis is 6.4%, derived 

using the following formula:  

 

Real vanilla WACC = Nominal vanilla WACC  - Average annual forward inflation    

 

Real vanilla WACC =      8.82% - 2.42% = 6.4% 

 

2.2.4 Data collection  

The original intention in the project was to obtain all data electronically, in partnership with 

the network operators, in order to facilitate updating on an annual basis. This would have 

allowed mapping the entire regional NEM, with a view to the constraint mapping being 

available for all decentralised technology proponents, and as an aid to network planners 

and policy makers. This was attempted with the two network operators who partnered in 

the project, namely Ergon Energy and Essential Energy.  

 

It became apparent relatively quickly that acquiring data for the entire network was not 

feasible within the project timeframe, as current data management systems used by the 

DNSPs did not easily allow data extraction in a suitable format, and nor were consistent 

systems, data schema or nomenclatures applied. Ergon Energy, in particular, made 

considerable effort to supply comprehensive data, but it transpired that it was extremely 

difficult to automate the process to any significant degree. This rendered it impossible to 

process data for the entire network. In particular, the lack of a common identifier for the 

same asset between different data sets of a DNSP (such as the hourly data and the load 

forecasting), made it almost impossible to achieve any degree of automation. Essential 

Energy found that even extracting data from their systems on a network-wide basis was 

too difficult and time consuming.  

 

This inconsistency, inaccessibility, and apparent inefficiencies of the data management, 

has been an important observation emerging from the study. Improving consistency and 

accessibility, and harmonising systems across the different DNSPs, would be beneficial 

for future network constraint analysis and assessment of market and policy response 

alternatives. 

 

For this reason, the project changed emphasis to map constrained assets where 

investment is proposed only, and in all states other than Victoria, to restrict mapping to 

areas where the solar resource was likely to be sufficient for CSP to be economic. This 

decision was taken because of the considerable time and resources needed to process 

network data manually.  

 

Initially, South Australian and Victorian network operators were not able to assist with data 

provision, so constraint mapping was undertaken using publicly available reports only. 

Once this was undertaken, the relevant DNSPs and TNSPs were asked to review data 

and fill in missing information, which all have done.  

 

Electricity demand forecasts in the NEM were revised downwards significantly during 

2012, with forecast annual growth rates in maximum demand reduced by 0.5% in Victoria, 
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0.7% in South Australia and New South Wales, and 1.7% in Queensland (AEMO 2012). 

This has a significant effect on the proposed network investment throughout the NEM, 

both by reducing the absolute amount as some constraints are no longer relevant, and by 

pushing investment proposals further away in time. This revision, which occurred to a 

significant extent during the project, meant that network data entered had to be then 

considerably revised and updated. 

 

Once the likely effect of the revised demand forecasts became clear, and on the advice of 

the relevant DNSPs, the project team decided to include transmission constraints in those 

states where distribution constraints were less likely to prove suitable for CSP, namely 

New South Wales and South Australia. 

 

The data issues encountered may be broadly summarised as:  

 Data format; 

 Currency of data; 

 Accessibility of data; and 

 Clarity. 

 

Data format 

Electricity network planning documents are available publically in report format only (i.e. 

PDF). This makes extracting data much more difficult than if data were available in 

spreadsheet format (such as Excel). Further, the report format varies considerable across 

the NEM, so it is very time consuming to extract the required data.  

 

Not all electricity network planning reports contained the same level of information, and 

none provide all the information required. For example, key information such as proposed 

investment amounts and years, or demand forecasts for sub-transmission feeders were 

not included in some reports. The co-ordinates of electricity assets are never included, 

and while this was assumed to be a relatively easy item for network operators to provide, 

this proved not to be the case – matching of constraint data with asset location proved to 

be a highly labour-intensive process. Hourly demand profiles are also not publicly 

available, even for districts. Reports from Victorian DNSPs are considerably more 

informative than public network planning reports from other states and could provide a 

useful template for harmonisation. 

 

Currency of data 

Publicly available NEM electricity network planning documents, including electricity 

demand forecasts, are updated annually. However, these are updated internally a number 

of times per year. This means publically available network data can be up to 12 months 

old, and if there are significant changes in the demand forecast between the release of 

public reports, this may significantly change the timing and size of any proposed network 

investment.  

 

Accessibility of data 

Negotiation with DNSPs and TNSPs for access to the network data was very time 

consuming, owing to concerns about confidentiality and because of the timing of DNSP 

network review processes. This has meant, in some instances, that by the time the 
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requested data had been negotiated, supplied and entered, more up-to-date information 

was available, requiring data to be re-entered. Different DNSPs have different levels of 

concern as to accessibility of data, with commercial sensitivities dominating in some cases 

and security concerns (e.g. terrorism) in others. Harmonisation across the NEM of rules 

for data access for research and planning purposes would enable more timely analysis of 

options on a NEM-wide basis. 

 

Clarity of data 

Descriptions of proposed investment in public electricity planning documents are very brief 

and are difficult to interpret without prior knowledge of the local electricity network. This 

means that attributing proposed investment to particular nodes of the network can be 

difficult. Where DNSPs and TNSPs were engaged with the project, much guidance was 

required to ensure the network planning data was interpreted correctly. 

 

Most public electricity planning documents do not contain sufficient spatial information 

regarding how assets, e.g. ZS are linked to other ZSs, TS and ultimately, feeders. This 

makes it difficult to calculate the deferral value, as augmentations upstream from the ZS 

may be missed. Only Ergon Energy and Essential Energy were able to supply Google 

Earth and schematic maps of their networks, which greatly illuminated this process. 

  

Proposed network investments that are not yet committed, and thus potentially avoidable, 

are commonly represented as ‘locked in’. Forecast network demand is then presented as 

if the proposed investments are approved and constructed, for example when it is 

assumed the new electricity assets will off-load currently constrained assets. This affects 

neighbouring connected network components, as load may be shifted onto or away from 

sites. This makes it difficult to assess the alternatives to augmentation.  

 

Network investment will often go out for regulatory testing as discrete ‘packets’, while the 

investment is frequently made on the basis of strengthening a network region, rather than 

a single point. Considering a regional non-network solution may be more appropriate than 

disaggregated point investments, but this is difficult when investment goes to regulatory 

test on a point-by-point basis. 

 

The research team found that this represented a significant impediment to the 

assessment of options for CSP plant configuration and economics; the same impediment 

would apply to other (non-network) alternatives. Ideally, data should be made available in 

forms enabling scenario analysis on both aggregated and point-by-point bases, to 

determine how different distributed energy options could compete commercially with 

network alternatives. 

 

Improved data (timeliness, accessibility, consistency and structure) could facilitate a 

breadth of scenario analysis facilitating far more flexible assessment of alternatives, 

including CSP generation alternatives.  

 

2.2.4.1  Data collection – Queensland  

The primary sources of data for the DANCE modelling in Queensland are reports and 

databases provided by Ergon Energy, including Ergon Energy Corporation Limited, 2013, 
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2012a, 2012b, 2012c, 2012f, 2012d, 2012e, with considerable additional information 

provided by Ergon Energy staff.  

 

Ergon Energy has been an invaluable partner in the project, and has not only supplied 

network and investment data for the modelling undertaken in this project, but has tirelessly 

provided assistance in interpretation.  

 

Ergon Energy attempted to supply network-wide data electronically, in order to test the 

ability to automate the processes. Unfortunately, the lack of a unique identifier for each 

asset in different data sets meant the various electronic data streams (for example, asset 

location, nameplate capacity, demand forecast and historical hourly demand) could not be 

linked to each asset in a systematic way. All data, therefore, had to be processed and 

interpreted manually.  

 

The timing of Ergon Energy’s internal network planning review meant that a complete data 

revision occurred part way through the project, when network augmentation plans were 

completed.3 The initial plan had been to automate systems using the previous data set, 

and update automatically once the revision was complete. Unfortunately, the failure to 

achieve data automation meant that both sets of data had to be processed and 

interpreted manually. There is a further complication as the Sub-transmission Network 

Augmentation Planning (SNAP) documents are not public, and the original data set did 

not reference the previous SNAP documents. It was decided that the data should be 

updated nevertheless.  

 

However, mapping was limited to areas likely to be suitable for CSP in order to reduce the 

time and resources required. This was defined as areas with a minimum direct normal 

irradiance (DNI) of 21 MJ/m2/day which did not fall in areas mapped as ‘least suitable’ for 

non-engineering reasons (Beninga 2009, reference in Lovegrove, Watt, Passey, et al., 

2012). 

 

2.2.4.2  Data collection – New South Wales  

The primary sources of data for the DANCE modelling in New South Wales are 

information from public documents (Country Energy & Transgrid 2011; Transgrid 2012), 

with considerable additional information provided by Transgrid and Essential Energy staff.  

 

2.2.4.3  Data collection – Victoria  

The primary sources of data for the DANCE modelling in Victoria are information from 

public documents (Jemena et al. 2012; SP AusNet 2011; Powercor 2012; SP AusNet 

2012), with additional information provided by SP AusNet and Powercor staff.  

 

                                                
3
 10-Year Sub-transmission Network Augmentation Plans (SNAP) for Ergon Regions – November (2012) 

Report IDs: ND 350, ND 351, ND 352, ND 354, ND 355, ND 356; and Ergon Demand Forecast Post Summer 
2012 SNAP publication, 50% and 10% Probability of Exceedence (PoE) published October and November 
(2012) respectively. 
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2.2.4.4  Data collection – South Australia  

The primary sources of data for the DANCE modelling in South Australia are information 

from public documents (ElectraNet 2012; ETSA 2012), with additional information 

provided by ElectraNet and SA Power Networks staff.  

 

2.3 MAPPING INDICATIVE FIRM CAPACITY FOR CSP  

The issue of capacity is critical within the electricity industry which requires that supply 

precisely meet demand (and losses) at all times and at all locations within the network. 

Variability and unpredictability in both locational demand and generation adds to this 

challenge. So do the time ranges that need to be considered – from operational supply-

demand balance within periods of less than a second, to forward-looking planning 

processes considering periods of a decade or more ahead. 

 

Capacity estimation plays a key role in planning for scales ranging from overall system 

generation, to particular regions of the network, down to network elements and individual 

plants. However, the range of relevant scales and timeframes, and the inherent future 

uncertainties in planning, makes defining capacity challenging. As noted earlier, improved 

data arrangements could facilitate enhanced scenario analysis to overcome the 

impediments caused by this inherent level of complexity. 

 

The concept of equivalent firm capacity, which is sometimes called capacity value or 

capacity credit, has been examined in detail for CSP systems by the USA’s National 

Renewable Energy Laboratory (NREL). This parameter can be expressed as either a 

number of MW or as a percentage of the nameplate capacity of the plant. NREL identify 

the effective load carrying capability (ELCC) as one of the most robust techniques. The 

ELCC is defined as ‘the power capacity of the conventional generator that yields the same 

loss of load expectation as the system with the renewable resource’ (Madaeni, Sioshansi 

& Denholm 2011). Evaluation of the loss of load expectation is a complex statistical 

process that requires comprehensive load and generation data for a whole system. There 

are however, some approximate methods that can be used, all of which are shown to 

underestimate the more accurate ELCC calculations. The easiest of these is the highest 

load hours approximation method. In this method, the capacity value is approximated by 

the capacity factor of the system during the highest load hours.  

 

A particular challenge for this project is that all electricity generators are prone to 

occasional failure – fossil fuel and renewable alike – whilst network elements generally 

have far greater reliability, although they are also subject to unexpected failures, such as 

line outages.  

 

Given the lack of a well-established measure of CSP capacity for network augmentation 

deferral in utility practice around the world, a modified version of highest load hours 

method has been used in this project. Note that there has not been comparison to the 

more accurate equivalent firm capacity method, and even that method does not fully 

account for some of the specific network-related issues noted above. The capacity fraction 

numbers determined are therefore considered indicative. The term, indicative firm 
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capacity (IFC), is used here to distinguish from the more precise definitions, such as the 

capacity value which is mentioned above. 

 

This section describes the method by which the IFC was determined. Sections 2.3.1 to 

2.3.3 describe each component of this modelling work, while Section 2.3.4 explains how 

each of these were integrated to perform the analysis.  

 

2.3.1 Identifying peak demand events 

Half-hourly electricity demand data for the years 2008 to 2010 in each market region of 

the NEM were obtained from AEMO. At present, the NEM has five market regions, each 

of which falls within a single state. For this work, only New South Wales, Queensland, 

South Australia and Victoria were considered. 

 

Peak demand events were defined to occur in one of four peak period classifications: 

● Summer afternoons (December to February, 2pm to 4pm); 

● Summer evenings (December to February, 5pm to 8pm); 

● Winter afternoons (June to August, 2pm to 4pm); and 

● Winter evenings (June to August, 5pm to 8pm). 

 

For each peak demand classification and each state, we identified the top seven half-

hourly peak demand events in each of the years 2008, 2009 and 2010. In order to ensure 

that weather conditions and peak events were examined on the full number of different 

days, half hourly peak events occurring on the same day were treated as one event, 

centred around the highest value. The seven peak demand events for each region in each 

of the three years formed 21 peak demand events, which were used for further analysis.  

 

2.3.2 Solar radiation data 

DNI is the measure of solar resource relevant for CSP generation systems. DNI data was 

obtained from the Bureau of Meteorology’s (BOM) gridded solar data product (Bureau of 

Meteorology 2013). BOM provides satellite-derived solar data across the Australian 

continent at 5km x 5km resolution and hourly intervals for the years 1998 to 2011. 

 

2.3.3 Concentrating solar thermal model and plant configurations 

CSP plants essentially consist of three basic sub-systems: 

● A solar field of mirrored concentrators of some type; 

● A thermal energy storage (TES) system; and  

● A power block with condensing system. 

 

Each of these sub-systems can be sized independently, relative to the others. Solar fields 

are typically larger than needed to run the power block at nameplate output under design 

point maximum DNI level. This enables the power bock to operate at full capacity at times 

of less than maximum DNI resource availability. Precise configurations are dictated by 
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commercial factors, with the rule of thumb that plants will be configured to optimise 

revenue generation in a given market location for the lowest possible capital cost. 

 

The actual field size, divided by the nominal requirement to run the power block at the 

nameplate output, is referred to as ‘solar multiple’, while the levels of storage are usually 

expressed as the number of hours of nameplate capacity operation that can be sustained 

from the TES. Therefore, three hours of TES is sufficient storage to run the power block at 

rated output for three hours. Where TES is included in plant configuration, solar field size 

will typically be greater, enabling a proportion of solar energy captured to be stored while 

the generator continues to operate at full capacity.   

 

Part of a system design for a particular project is to estimate the optimum combination 

that maximises economic return. This optimum configuration depends both on the level of 

solar radiation resource available, and the nature of the different possible sources of 

revenue from plant operation. A lower level of solar resource will suggest a bigger solar 

field relative to the other components.  

 

Depending on the relative costs of storage to other components, some level of TES will 

generally deliver the lowest LCOE due to a combination of operation of the power block at 

higher output levels for longer periods, and the avoidance of energy dumping at times of 

highest solar input. In effect, TES enables more capital efficient usage of major capital 

components such as the turbine, generator and grid connection assets. However, the key 

issue is maximising the net benefit (income minus costs) so different plant configurations 

might be optimal under different circumstances. For example, electricity markets which 

have highly variable electricity prices, might see plants with a larger power block relative 

to the other components, in order to permit higher dispatch during high price events. 

Additional network support revenue might change the optimal plant configuration by 

requiring the ability to supply electricity across a wide range of time intervals. Hence, a 

range of possible configurations is considered in the study.  

 

Table 5: CSP plant configurations  

Thermal energy storage Solar multiple 

0 hours 1.4 

1 hour 1.5 

3 hours 1.7 

5 hours 1.9 

10 hours 2.5 

15 hours 2.8 

 

For this study, a specific solar multiple was used for each level of storage, as shown in 

Table 5, rather than varying the solar multiple independently. These solar multiple values 
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are typical for a good solar location with a plant configured for lowest LCOE rather than 

peaking performance. This is a reasonable assumption given current typical patterns of 

wholesale market pricing in the NEM, the common power purchase agreements being 

offered for renewable generation, and the Renewable Energy Target income available, 

which is entirely based on overall MWh output of the plant. 

 

Each plant configuration required a full set of model runs for each location and year. 

Options of 0, 1, 3, 5, 10 and 15 hours were considered for evaluation of IFC, to provide a 

view across a reasonable variety of configurations. In reality, CSP plants can be built with 

any amount of TES, from hours, to days, and even weeks, and have been built with 

capacities ranging from 0 to 15 hours of nameplate capacity output.  

 

This project used an existing model for analysis of a CSP plant - a Python implementation 

of a simple energy-balance model published by Stine and Geyer (2001). The model 

incorporates storage, varied collector sizes, heat losses in the collector field, heat losses 

in storage, and the requirement for a certain amount of energy each day to heat the 

working fluid before any steam is produced. It does not include additional detail included 

in some other CSP models, such as NREL’s highly regarded System Advisor Model 

(SAM) (National Renewable Energy Laboratory 2013). SAM considers additional weather 

factors that affect the performance of a CSP plant, such as ambient air temperature, wind 

speed and relative humidity, as well as incorporating detailed dynamic modelling of heat 

flows within the plant. 

 

The hourly time series of power output from the model used in the project demonstrated 

good agreement with the more detailed SAM physical model, and also with models used 

in a major recent Australian study by IT Power (Australia) (Lovegrove et al. 2012). In a 

series of validation trials, the project model underestimated the annual energy production 

by about 1%. Comparing the two-time series of hourly power output, the cross-correlation 

coefficient was approximately 0.81. The advantage of this simplified project model is that it 

permits rapid simulation of the performance of different plant configurations and potential 

control strategies. By comparison, SAM can only be used in stand-alone mode. 

 

2.3.4 Simulating CSP output during peak demand events 

The timing of peak demand events and the CSP model performance are integrated to gain 

IFC figures for the CSP plant configurations given in Table 5 (on page 26).  

 

For each peak demand event (21 events x 4 NEM states x 4 classifications x 5 

configurations), we simulated CSP plant generation in the lead-up to the peak demand 

event in every 5km x 5km cell located in each state. Operational simulations commence at 

midnight the day before the peak demand event. This ensured that at the end of the day 

prior, TES levels were approximately representative for the following day. We then 

simulated all of the hours of the day of the event leading up to the peak demand event. At 

the hour of the peak demand event, we then noted the CSP plant output. Once each of 

the 21 events was simulated, we took the average plant output to be the IFC for that state 

and peak period classification. 
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2.4 MODELLING THE COST BENEFIT OR GAP FOR CSP 

AT GRID CONSTRAINED LOCATIONS  

An overview of the methodology used to determine the cost benefit or gap of installing 

CSP at network constrained locations is shown in Figure 8.  

 

Initially, the model determines if CSP is likely to be suitable to meet the constraint, and the 

minimum size (MW) of plant required to do so.  

 

The suitability of CSP to alleviate a network constraint is determined by comparison of the 

network constraint location, time of day, and season with a CSP plant’s IFC for that 

location for the relevant period. If, under the network constraint conditions, no 

configuration of CSP plant is able to provide an IFC of 80% or higher, then the CSP is 

deemed unsuitable to alleviate the network constraint. It should be noted that the 80% IFC 

threshold has been chosen as indicative of what would, in practice, be a much higher 

probability of meeting a real constraint.  

 

Firstly, in situations with a financial reward or contractual obligation to meet a constraint, 

dispatch strategies can and would be tailored to give a high level of priority to meeting the 

particular constraint. This is not reflected in the simple dispatch strategy adopted by our 

model to determine the IFC, in which the plant essentially commences generation at 12pm 

and continues generation until the storage is empty.  

 

Secondly, we assume that CSP plant operators with a network support contract could use 

on-site gas supply to provide additional emergency generation (possibly at part load) for 

limited periods. Most CSP plants currently operating worldwide have on-site gas-fired 

heaters for pre-heating on start-up. Typically, the heaters are designed to start the plant 

and continue operation at minimum load, circa 25%, depending on steam turbine and 

plant design. While it is highly unlikely that a CSP plant operator would choose to run on 

gas for any significant period, configuring the gas boiler to allow the capability to provide 

emergency generation at whatever level of support is required can give additional 

certainty to the provision of network services.  

 

An alternative to running the plant directly is to integrate the existing gas boiler into the 

TES system, to allow the heater to charge the storage over a longer period. Even if gas 

was used as emergency backup as described, it is likely to be for a very much lower 

proportion of generation.  

 
 

 

 

 

 

 

 



 INSTITUTE FOR SUSTAINABLE FUTURES  

 29 

 

2013 

Breaking the solar gridlock. Potential benefits of installing concentrating solar thermal 

power at constrained locations in the NEM 

Figure 8: Determining the cost benefit or gap 
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The minimum hours of storage capacity for the plant is determined by the IFC mapping, 
and is taken as the least hours of storage required for the plant to achieve 80% IFC at the 
relevant network constraint location, time of day, and season.  
 
The minimum size (MW) of CSP plant is matched to the projected constraint size (MVA) at 
year 10, as it is assumed that it would only be cost effective to alleviate network 
constraints in situations where the investment could be avoided rather than deferred.  
 
The maximum size (MW) of CSP plant is the maximum generator size which could be 
connected to the constrained node of the network, be it ZS, TS or BSP. This is the 
nameplate capacity of the connection point, unless we were advised otherwise by the 
network operator.  
 
The cost benefit per unit energy of the CSP plant is calculated by comparing the LCOE to 
the plant’s estimated revenue, including a network support payment: 
 

Cost 
benefit  

= LCOE - Average electricity sales 
energy income 

- LGC - network support payment 
per unit energy 

 
Where: 

LCOE is the Levelised Cost of Electricity and  
LGC is the Large Generation Certificate. 

 

The model iterates through the cost benefit calculation for all plant sizes and storage 

configurations to determine the optimum economic configuration. Plant size is considered 

in increments of 2MW between the minimum and maximum, and each storage 

configuration (0, 1, 3, 5, 10 and 15 hours) above the minimum storage is determined by 

the IFC modelling. Note that the discrete steps are reflective only of what was modelled in 

the IFC and cost calculations, and that CSP plants may have any amount of TES. 

 

The inputs to the calculations were: 

● Constraint characteristics from the DANCE modelling (location, size, season, 

potentially avoided network investment, maximum generator size which may be 

connected, and the year a generator would have to be commissioned to provide 

network support); 

● Firm capacity from the IFC modelling; 

● DNI from BOM mapping (Bureau of Meteorology 2012); 

● A projection of average pool prices by state (SKM MMA 2012a), adjusted to allow 

for the fact that the time of day CSP plants generate electricity which corresponds 

to higher than average prices for electricity; 

● Capital cost by plant size (MW) and storage hours, adjusted for installation year by 

use of learning curve cost reductions for CSP; and 

● Operations and maintenance (O&M) costs by plant size, adjusted for installation 

year by use of learning curve cost reductions for CSP. 

 

More details of the LCOE calculation is given in Section 2.4.1, and of the cost benefit or 

gap calculation and its components in Section 2.4.3. 
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2.4.1 Capital cost and LCOE  

The capital investment required for different plant sizes and TES configurations was 

modelled using Thermoflex (version 23.0)4 and subsequently used to determine the LCOE 

for each plant configuration.  

 

Thermoflex software is widely used in academia and industry to model detailed physical 

and financial performance of parabolic trough, Fresnel and solar tower plants. The model 

has financial adjustment factors to meet specific country conditions, such as higher 

Australian labour costs. Comparisons of capital costs for a number of examples 

(Lovegrove et al. 2012) showed good agreement, with values within 5%.  

 

At present, the development stage of CSP technology tower plants with storage have 

lower costs than other types of collectors. Tower plants have a higher temperature 

difference between hot and cold tanks, and are currently able to deliver the most cost 

effective overall storage solution using twin-tank molten salt (which is the commercially 

established storage solution). Consequently, a tower plant with twin-tank molten salt has 

been used as the proxy technology for this comparison. Figure 9 and Figure 10 show an 

example of molten salt thermal storage and the associated auxiliary equipment. Trough or 

Fresnel plants could deliver similar technical performance, if the cost of their storage 

systems could be reduced to compete with the higher temperature tower storage solution. 

 

Figure 9: Molten salt storage tanks (7.5hrs) at Andasol III plant in Andalusia, 
southern Spain. 

 

Source: Juergen Peterseim 

 

                                                
4
 www.thermoflow.com 
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Figure 10: Auxiliary equipment at Andasol III plant in Andalusia, southern 
Spain. 

 

Source: Juergen Peterseim 

 

Table 6 shows selected investments for 2MWe to 100MWe plants with 0 to 15 hour TES. 

These costs were used to derive a capital costs formula for any given plant capacity and 

TES configuration, shown in Figure 11 and Figure 12 (shown on page 34). This is the 

plant investment only and does not include grid connection costs. 

 

Table 6: CSP capital cost by plant capacity and thermal energy storage 
(AU$m) 

 Thermal energy storage 

Plant capacity (MWe) 0 hr 1 hr 3 hr 5 hr 10 hr 15 hr 

2 $29m $31m $34m  $39m $49m  $54m  

6 $59m  $64m  $75m  $85m  $104m  $115m  

10 $87m  $94m  $103m  $116m  $139m  $153m  

20 $143m  $159m  $168m  $190m  $229m  $252m  

40 $228m  $259m  $285m  $322m  $391m  $431m  

70 $355m  $411m  $452m  $512m  $634m  $699m 

100 $487m  $562m  $623m  $705m  $903m  $996m  
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Figure 11: CSP investment for 2-40MWe with 0-15hr thermal energy storage 

 

 

The costs include a backup boiler with 25% full-load capacity in all cases, giving quick 

start-up capabilities to allow the compensation of DNI fluctuations when TES is empty 

(Peterseim et al. 2012). Plants smaller than 20MWe are modelled without steam 

reheating, while larger units include single steam reheating.5 

 

Cycle efficiencies are lower with smaller plant capacities, up to 50% lower for 2MWe 

compared to 100MWe, and are considered in the cost modelling as they affect total plant 

investment significantly. However, it should be mentioned that the investment accuracy in 

this assessment decreases with decreasing plant sizes, as site- and technology-specific 

criteria such as plant efficiency, connection costs and local labour cost are more 

complicated to determine than for larger plants. 

 

Figure 11 and Figure 12 show the capital cost for 2 to 100MWe CSP plants with different 

TES capacities. The data is derived from modelling using Thermoflex for specific plant 

capacities of 2, 6, 10, 20, 40, 70 and 100MWe. These points were used to derive 

equations to determine the capital expenditure for all capacities between 2 to 100MWe. R
2 

are greater than 0.99. 

 

                                                
5
 Steam reheat is a mechanism employed in large steam power blocks whereby intermediate 

pressure steam exiting a high pressure turbine is reheated before entry to a lower pressure turbine. 
It increases efficiency but is too complex to implement in a small system. 
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Figure 12: CSP investment for 40-100MWe with 0-15hr thermal energy 
storage 

 

 

Refer to Table 5 in Section 2.3.3 (on page 26) for the solar multiples used for the different 

TES configurations. 

 

Future CSP investment reductions could vary significantly from 25% to 60% by 2022, 

depending on the plant deployment, learning curve advancements, and technology 

improvements (Lovegrove et al. 2012; IRENA 2012). This study assumed an annual CSP 

growth rate of 20% with a 0.85 progress ratio, which was the mid-point of the estimates, 

leading to a 39% investment reduction in 2022 (Lovegrove et al. 2012). Higher investment 

reductions might be too optimistic in the current CSP environment, with considerable 

uncertainties in CSP markets, such as Spain; and lower rates may be too pessimistic as 

new countries, such as India, South Africa or the MENA region, become important market 

players.  

 

Figure 13: Time based cost reduction multiplier 
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The future investment reduction path, and the corresponding logarithmic curve that has 

been used for interpolation, are shown in Figure 13. The reductions were applied to the 

operational as well as the capital costs. 

 

The LCOE is determined using the following simple LCOE equation based on a plant 

lifetime of at least 25 years, a WACC of 7.9%, the O&M (shown in Figure 14 on page 38), 

and the capacity factors provided in Table 8 (on page 37): 

 

iable

c

fixedR
MO

PF

CF
LCOE var&





 

Where:  

LCOE is the Levelised Cost of Electricity, 

P is the nameplate capacity of the system, 

Fc is the capacity factor, 

Co is the total initial capital cost and 















n

n

R
DR

DRDR
F  is the capital recovery factor and is dimensionally the same 

as the discount rate. 

 

In addition to smaller units having inherently lower cycle efficiencies, their operational 

costs are higher, particularly for personnel. A 50MWe plant, such as Andasol 1, requires 

forty O&M employees (Madaeni, Sioshansi & Denholm 2011) while a 2MWe plant would 

require three to five operators (depending on the degree of plant automation). This higher 

ratio of personnel-to-MWe increases the operational costs significantly.  

 

As can be seen in Figure 14, estimate O&M costs vary from $40/MWh for a 2MW plant to 

$22/MWh for a 40MW plant. Despite high automation and the possibility for unattended or 

limited attendance, the Australian Standard (AS) 2593-2004 (Boilers – Safety 

management and supervision systems) requires a boiler check with unattended operation 

(maximum 10MWth and 6MPa) every 24 hours, and of a boiler with limited attendance 

operation (maximum 20MWth and 6MPa) every four hours to ensure safe operation and 

minimise risk. The procedure has to be performed by trained personnel (i.e. an accredited 

boiler attendant). Additional requirements are specified in AS 2593-2004 for boilers with 

gas and oil firing, which are the predominant fuels used in CSP backup systems. Boilers 

larger than 20MWth require attended operation as per AS/NZS 3788 and AS 3873. These 

codes have been considered when determining the O&M costs for the different plant 

capacities provided in Figure 14. 
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Figure 14: Operations and maintenance costs by plant size ($/MWH) 

 

 

Table 7 gives LCOE examples for a 2MWe and 100MWe CSP plant with different TES 

configurations for the years 2013 and 2022. 

 

Table 7: LCOE for CSP in 2013 and 2022 (DNI 21.7MJ/m2/day) AU$/MWh 

Thermal energy storage 2013 LCOE ($/MWh) 2022 LCOE ($/MWh) 

2MWe  100MWe  2MWe  100MWe  

0 hours $805 $281 $520 $182 

1 hours $693 $260 $448 $168 

3 hours $619 $230 $400 $148 

5 hours $593 $217 $383 $140 

10 hours $571 $216 $369 $139 

15 hours $559 $210 $361 $136 

 

2.4.2 Annual plant output  

The capacity factor for the individual plant configurations was modelled in Thermoflex 

considering different DNI levels and TES configurations (as shown in Table 8). Thermoflex 

contains a DNI database which was used for this purpose.6 As expected, the capacity 

factor increases with higher DNI and thermal storage levels and the results are in line with 

                                                
6
 The Thermoflex model was based on a solar tower technology, and a plant at Mildura was used 

as a base-case scenario. For the purpose of this assessment, the results were interpreted as a 
proxy for overall performance of CSP plants. 
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other studies (Lovegrove et al. 2012; IRENA 2012). It should be stressed that the capacity 

factors provided are based on modelled DNI data and are generic for the purpose of an 

Australia-wide assessment. Using measured DNI data, and a specific CSP technology in 

a more detailed project investigation, is likely to result in slightly different results. 

 

Table 8: Capacity factor for different storage levels, based on average DNI 

Thermal 

energy 

storage  

Solar 

multiple 

Capacity factor by average daily DNI 

15.8 

MJ/m2 

17.8 

MJ/m2 

19.7 

MJ/m2 

21.7 

MJ/m2 

23.7 

MJ/m2 

24.7 

MJ/m2 

0 hours  1.4 10.7% 13.2% 15.7% 18.3% 23.0% 26.3% 

1 hours  1.5 13.4% 16.6% 19.7% 23.0% 28.9% 33.1% 

3 hours  1.7 17.0% 21.0% 25.0% 29.1% 36.6% 41.8% 

5 hours  1.9 20.5% 25.2% 30.0% 35.0% 44.0% 50.3% 

10 hours  2.5 26.3% 32.5% 38.6% 45.0% 56.5% 64.7% 

15 hours  2.8 29.8% 36.8% 43.8% 51.0% 64.1% 73.3% 

 

2.4.3 Calculating the cost benefit  

Once the LCOE and annual plant outputs are known, the remaining elements to calculate 

the cost gap or benefit are the estimated annual network support payment, the electricity 

sales income, and the income from the large-scale Renewable Energy Target received in 

the form of large generation certificate (LGC) sales.  

 

There is considerable uncertainty over future wholesale electricity prices, the carbon price 

and LGC, as all three will be considerably affected by future policy directions. For this 

reason, the cost gap modelling uses average revenue over the first 10 years, while the 

LCOE is calculated over the full project life of 25 years. It is assumed that the LGC and 

the network payment will be replaced by similar policy initiatives and instruments providing 

compensation for network support and support for low carbon energy generation at the 

end of the first 10 year period.  

 

The cost benefit, or gap, is calculated both with, and without, a carbon price. However, the 

effect of removing the carbon price is negligible, as the projected price of LGCs rise when 

no carbon price is in effect, as can be seen in Table 13 on page 40.  

 

2.4.3.1  Network support payment 

The network support payment calculation assumes that construction of the CSP system 

will avoid the proposed network investment for the duration of its economic life. The 

potential network support payment available at a constrained location is based on the 



 INSTITUTE FOR SUSTAINABLE FUTURES  

 38 

 

2013 

Breaking the solar gridlock. Potential benefits of installing concentrating solar thermal 

power at constrained locations in the NEM 

investment proposed to address the constraint. The calculation assumes that the payment 

is discounted from the total value of the network based comparator, acknowledging that 

the nature of network support provided by any form of non-network (distributed 

generation) solution, fossil-fuelled or renewable, differs from that provided by additional 

poles and wires, and that, in the absence of regulatory or market incentives, network 

operators’ decision to adopt non-network solutions would likely be driven by lower cost. A 

factor of 0.8 has been applied to the proposed investment to reflect this discounting 

impact. This appeared to be a reasonable first assessment on discussion with network 

operators (note also that CSP options would need to be compared with other non-network 

solutions). 

 

The network support payment is calculated as:  

 

Network payment = (Proposed investment  x 0.8 x WACC) + Average avoided depreciation  

 

The WACC is the same value as used in the DANCE modelling (see Section 2.2.3 for 

details). The average avoided depreciation is calculated over 10 years at a rate of 2.5% 

per year, assuming that network assets would be depreciated over 40 years.  

 

2.4.3.2  Electricity sales 

Ten year forward averages of wholesale electricity and LGC prices were calculated from 

modelling undertaken for the Climate Change Authority (SKM MMA 2012b), which 

projected pool prices for each state, and LGC prices with and without a carbon price, after 

2015 (both cases include a carbon price until 2015 on the assumption that the legislated 

carbon price would remain in effect until then). Forward averages of the pool price and the 

effect of the carbon price on pool prices,7 are shown in Table 9 and Table 10 by state.  

 

Table 9: Ten year forward average: wholesale electricity pool price (no 
carbon price) ($/MWh) 

 
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 

Qld $38.9 $39.2 $39.8 $42.6 $46.0 $49.3 $52.2 $55.1 $58.3 $60.7 $62.9 

NSW $36.0 $36.0 $36.6 $39.4 $42.9 $46.0 $49.2 $52.0 $55.2 $57.3 $58.9 

Vic $37.9 $37.9 $38.5 $41.3 $44.9 $48.5 $52.2 $55.9 $60.3 $62.7 $64.4 

SA $40.4 $39.6 $39.7 $41.4 $44.4 $47.6 $50.9 $54.4 $58.4 $60.7 $62.2 

Source: SKM MMA, 2012 

 

                                                
7
 In the case with the carbon price, the 10 year forward average wholesale electricity price = 10 

year rolling average price without carbon price + the 10 year rolling average of the carbon price 
effect on a state by state basis. 
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Table 10: Ten year forward average: carbon price effect on average pool 
price  

 
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 

Qld $14.1 $18.8 $24.4 $29.1 $33.1 $37.4 $41.2 $45.3 $49.0 $51.9 $52.7 

NSW $15.9 $20.3 $25.1 $28.5 $31.0 $34.5 $37.7 $41.2 $44.2 $47.0 $47.7 

Vic $14.5 $18.6 $23.2 $26.7 $29.8 $33.5 $37.3 $41.1 $44.0 $47.1 $48.0 

SA $14.4 $18.6 $23.2 $27.1 $30.3 $34.1 $37.9 $41.7 $44.7 $47.8 $48.7 

Source: SKM MMA, 2012 

 

A multiplier is applied to the 10 year forward average pool prices to account for the fact 

that CSP generation, by its nature, tends to align relatively well with peak demands and 

pricing. The multipliers derived in this project, and used in the cost calculations across the 

NEM, are shown in Table 11.  

 

Table 11: Multipliers used to adjust average pool price for CSP dispatch time 

 
0 hrs 1 hrs 3 hrs 5 hrs 10 hrs 15 hrs 

Qld 1.29 1.48 1.66 1.25 1.13 1.09 

NSW 1.48 1.64 1.80 1.35 1.19 1.13 

Vic 1.38 1.48 1.58 1.30 1.25 1.20 

SA 1.97 2.21 2.45 1.61 1.36 1.26 

 

During the first iteration of the modelling, we used multipliers taken from Lovegrove et al. 

(2012), shown in Table 12, which were calculated by comparing the estimated revenue 

from CSP with a reasonable dispatch strategy, and average pool prices for 2005 to 2010. 

However, in the course of this research, we undertook revenue optimisation for case 

studies in each state, using three years of weather data at each location and optimising 

the plant output for revenue (see Section 2.5.1 for details). The multipliers were found to 

be considerably lower than those reported in the IT Power (Australia) work (Lovegrove et 

al. 2012), particularly for high levels of storage (above five hours). The difference arises 

from the underlying assumption in this project that solar multiple and storage hour 

combinations are chosen to increase capacity factor, in contrast to the IT Power 

(Australia) analysis that looked at configurations suitable for ‘peaking’ dispatch to 

maximise energy sales revenue.  
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Table 12: Multipliers from “Realising the potential of concentrating solar 
power in Australia” report 

 
0 hrs High levels of storage 

Qld 1.35 2.09 

NSW 1.32 1.95 

Vic 1.50 1.90 

SA 1.81 2.77 

Source: Lovegrove, Watt, Passey, et al., 2012, page 126 

 

We tested the effect of reducing the solar multiple significantly, relative to TES, and found 

that the ratio of optimised revenue compared to average pool prices did increase, to be 

somewhat higher than the multipliers shown in Table 12. However, the modelled 

economic benefit from improved electricity sales revenue was far outweighed by the 

increase in LCOE which resulted. We therefore, used the more conservative multipliers 

derived during this study, shown in Table 11, to adjust the projected average pool price to 

calculate revenue. The multipliers shown are the average values for the three years 

examined from three locations in Queensland, and two locations in each of the other 

states.  

 

2.4.3.3  Large generation certificates 

Rolling 10 year averages were calculated for LGC prices, both with and without a carbon 

price, using the SKM MMA modelling for the Climate Change Authority (SKM MMA 

2012b). The annual forward rolling 10 year averages are shown in Table 13. 

 

Table 13: Ten year forward average: Large generation certificate price 

 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 

With 

carbon 

price  

$57.2 $54.5 $50.6 $45.9 $40.5 $34.6 $28.2 $21.8 $15.6 $11.6 $8.7 

No 

carbon 

price 

$72.6 $73.3 $73.4 $72.4 $70.9 $69.0 $67.0 $64.8 $59.8 $58.5 $57.0 

Source: SKM MMA, 2012 
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2.4.4 Land requirements and connection distance  

The land demand in this assessment is modelled with Thermoflex considering different 

TES levels. Some examples for the plant footprint are provided in Table 14 and the 

graphs and equations to calculate the specific plant footprint are shown in Figure 15. 

 

Table 14: CSP plant footprint as a function of plant capacity and thermal 
energy storage (hectares) 

Thermal 

energy 

storage 

Plant capacity in MWe 

2 4 6 8 10 12 14 16 18 20 50 100 

15 hours 27 47 66 83 101 117 133 149 165 180 390 729 

10 hours 23 40 55 70 84 98 112 125 138 151 327 612 

5 hours 17 30 42 53 64 75 85 95 105 115 249 466 

3 hours 16 27 38 48 58 68 77 87 96 105 226 423 

1 hours 14 24 33 42 51 59 67 75 83 91 197 368 

0 hours 13 23 32 40 48 56 64 72 80 87 188 352 

Note: See Table 5 for the assumed solar multiple for each storage level 

 

Typically, large power tower systems require more land than parabolic trough and Fresnel 

systems plants of the same capacity. However, smaller modular configurations (such as 

that being developed by eSolar)8 have higher land use efficiency. The land area use 

requirement difference can be significant (Müller-Steinhagen & Trieb 2004). The results in 

Table 14 use the total plant area for large central tower plants, with the results in line with 

actual installations. However, land cost typically makes up a small proportion of the capital 

cost of CSP plants.   

 

For example, the 20MWe 15 hour TES Gemasolar plant in Spain has a footprint of 185 

hectares (Burgaleta, Arias & Ramirez 2011); the land area is large compared with the MW 

capacity due to the additional solar energy collection required to charge the large amount 

of TES. The Thermoflex modelling results in 177 hectares for the same plant capacity and 

TES configuration. This marginal difference is acceptable as it can be accounted for by 

factors such as differences in heliostat spacing and field layout, which will be optimised 

based on latitude and longitude of the plant location and heliostat size and dimensions. A 

constant DNI average value was also used for all locations rather than site-specific DNI 

value, as required for a real project. 

 

                                                
8
 http://www.esolar.com/ 
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Figure 15: Plant footprint depending on plant capacity and thermal energy 
storage 

 
 

2.4.5 Connection costs  

Total cost calculated with Thermoflex for no TES plants were within ±5% of the costs 

given in the IT Power (Australia) report (Lovegrove et al. 2012), which included generic 

connection costs. However, the Thermoflex software does not include connection costs 

because these are site specific and vary from country to country. In this study, a 

conservative approach was adopted with connection costs added to the modelled CSP 

system cost from Thermoflex. This increased the assumed cost of the CSP system by 8% 

to 11% for a CSP plant without TES, relative to costs given in Lovegrove et. al.(2012).  

 

We have used the following generic connection costs (Nelson 2013), although it must be 

stressed that these are site specific and could vary considerably: 

● 5MW (assumes 11kV connection): $6m, 

● 10MW (assumes 33kV connection): $9m, 

● 20MW (assumes 66kV connection: $12m, and 

● 30MW to 100MW (assumes 132kV scheduled connection): $25m to $40m. 

 

These costs were used to derive two formulas (for plant sizes 25MW and below, and for 

plant sizes greater than 25MW) on the assumption that plants above 20MW would be 

connected to the 132kV system. The equations used are shown in Figure 16 and Figure 

17. These calculations assume the plant is close to the connection point.  
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Figure 16: Connection costs by plant size, 5MW – 25MW (AU$m) 

 

 

Figure 17: Connection costs by plant size, 25MW – 100MW (AU$m) 

 

 

When undertaking case study analysis, we obtained location specific connection costs 

where possible, which in some cases were considerably lower than the costs outlined 

above.  

2.5 CASE STUDY METHODOLOGY  

Case study locations were chosen in each state in consultation with the relevant DNSP or 

TNSP. Selection was based on the cost benefit found in the NEM-wide mapping, but also 

on inclusion of a range of years and constraint types.  
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The specific constraint and draft results were discussed in a workshop with the relevant 

DNSP or TNSP, in order to define minimum requirements for plant operation that could 

avoid the need for augmentation. The workshops were also used to explore appropriate 

plant sizes, connection costs and the potential for network support payments.  

 

Information from the workshops was subsequently used to revise the case studies, and to 

set parameters on plant type and operation.  

 

In each case study location, weather records for 2009/10, 2010/11 and 2011/12 were 

used to obtain a generation profile modelled on 0, 5, 10 and 15 hours of energy storage 

for each of the three years.  

 

This was used to derive both economic and performance data, specifically:  

 The potential for revenue optimisation, relative to average pool prices, to derive a 

specific multiplier for the location;  

 The number of days generation below relevant thresholds, as determined in 

discussion with the network operator; and  

 The performance of the CSP plant at peak times, by comparison of the modelled 

CSP generation for the relevant year to the hourly demand data for the same year.  

 

Simple cost benefit analyses were undertaken for a potential CSP plant at the location, 

using data derived from modelling, and information from the case study workshops.  

 

2.5.1 Potential for revenue optimisation 

The total hours of generation for each day of the year, including operations from TES, was 

modelled as described in Section 2.3.3. The output was the proportion of nameplate 

generation capacity occurring at each hour of the year. As noted earlier, the dispatch 

strategy assumed was unsophisticated - simply that the plant started generation as soon 

as possible and continued until all storage was empty, as the purpose was only to obtain 

the total number of generation hours, including hours of operation needed to meet the 

constraint.  

 

The hours of generation for each day were matched to the average pool prices for that 

year, choosing the optimum revenue with several conditions: 

 There could be no more than two blocks of generation per day;  

 No block could be less than two hours; and 

 When generation hours exceeded storage hours, those hours above the storage 

levels had to be dispatched at times when a plant with no storage would have 

been generating.  

 

The results from this optimisation were used both for the case studies, and also to derive 

state by state revenue multipliers to use for the NEM-wide cost benefit analysis, as 

described in 2.4.3.2. 
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2.5.2 Number of days generation 

The three years of modelled hourly generation data were used to determine the number of 

days below various levels of generation that had occurred in each of the three analysis 

years, and the length of continuous days of low generation days. This data informed the 

requirements of the CSP to provide sufficient reliability.  

 

2.5.3 Performance of the CSP plant at peak times 

Hourly output data was compared to demand data for the constrained network asset to 

determine whether CSP, with varying levels of storage, could have been operating at the 

required times. 

 

2.5.4 Cost benefit and ‘what if’ analysis 

Cost benefit was calculated by comparing the calculated LCOE for the indicated plant 

configuration to projected revenue streams available from a plant with that configuration.  

 

The cost of oversizing the gas boiler for backup generation purposes was included if 

required to meet the minimum performance standard, as determined in the case study 

workshop.  

 

Revenue was considered in two models. The first assumes the generator sells into the 

wholesale pool, using the revenue multiplier applied to the average pool price, derived for 

that location, as described in Section 2.4.3.2 (‘pool sales model’). The second model 

assumes a power purchase agreement (PPA), using a base price adjusted by an annual 

increment. The LGC value is included in the PPA price. A 10 year forward average of 

projected prices for electricity and LGC sales was used (SKM MMA 2012a), with and 

without the effect of the carbon price. This is described in more detail in Sections 2.4.3.2 

and 2.4.3.3. 

 

A ‘what if’ analysis was carried out to identify:  

 The effects of a capital grant or cost reduction on cost benefit per MWh, in order to 

identify the cost reduction needed to attain a ‘break even’ cost benefit in any 

particular year. This was undertaken for both the PPA and the pool sales model; 

and  

 The effect of storage hours on LCOE.  
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3 RESULTS  

3.1 NETWORK CONSTRAINTS AND POTENTIALLY 

AVOIDABLE INVESTMENT  

A total of 93 constraints, or constrained areas, were identified in non-metropolitan areas in 

the NEM during this research, either from public network planning documents or 

information supplied directly by the network operators. As noted previously, network 

service provider’s analyses of network constraints usually assume traditional network 

responses, and are informed by the Regulatory Investment tests for Distribution and 

Transmission (RIT-D and RIT-T). 

 

In two states, Queensland and South Australia, constraints were only examined in areas 

with DNI likely to be sufficient for CSP to operate economically, while in Victoria and New 

South Wales all non-metropolitan constraints were mapped where possible. The high 

number of constraints in Victoria reflects the fact that use of data from public information 

allowed easy inclusion of all the identified non-metropolitan constraints, so low DNI areas 

were included, and is not because the network is more constrained.  

 

Approximately $0.8 billion of potentially avoidable network augmentation has been 

identified across the NEM in areas with suitable solar irradiance for installation of CSP 

(defined here as average DNI more than 21 MJ/m2/day), as shown in Table 15. Figure 18 

shows all the proposed investment identified in Queensland, New South Wales and South 

Australia, while Figure 19 shows proposed investment in Victoria. There is a further $0.5 

billion of potentially avoidable network expenditure which has been identified in areas with 

DNI below 21 MJ/m2/day.  

 

Table 15: NEM wide - potentially avoidable investment  

  QLD NSW VIC SA Total 

2014 - 2015 $15m $5m $7m - $26m 

2016 - 2017 $109m $55m $17m $5m $186m 

2018 - 2024 $267m $34m $17m $231m $547m 

TOTAL (DNI>21 MJ/m2/day) $390m $93m $40m $236m $759m 

Number of constraints 24 10 40 4 78 

Total investment 2013 to 2024 $477m $122m $430m $247m $1,276m 

 

Most of the investment occurs in the period from 2016 onwards. This reflects the fact that 

maximum demand forecasts were reduced significantly during 2012 (AEMO 2012), with 

the result that proposed growth-related augmentation has, in many cases, been deferred. 

It is important to stress that proposed investment changes as demand forecasts change, 

as different non-network solutions come into play, and as reliability criteria are adjusted. 

Thus, the investment identified here is a snapshot of expectations at the present time, and 

will be different as time moves forward.  
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Figure 18: Potentially avoidable network investment in QLD, NSW and SA 
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NEW SOUTH 

WALES 

SOUTH 

AUSTRALIA 

Figure 19: Victoria - potentially avoidable investment 

 

Detailed interactive maps of the proposed network investment and ADV are available at 

www.breakingthesolargridlock.net. Spreadsheet format is also available.  

 

The type of constraints are shown in Figure 20, by state. The majority of constraints in 

Queensland were n-1 Security of Supply constraints, resulting from the need to have 

sufficient network capacity such that supply can be maintained to a region even if a single 

element of the network is unavailable. The threshold for this criterion is 15MVA, so the 

applicability of this is also related to growth.  

 

http://www.breakingthesolargridlock.net/
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Figure 20: Types of network constraints by state (SA, NSW and QLD) 

 

Note: there was insufficient information to adequately categorise Victorian constraints 

3.2 CSP - INDICATIVE FIRM CAPACITY  

Three sample maps of IFC are shown in Figure 21 and Figure 22. There are several 

aspects to consider in these results:  

● The characteristics of the IFCs shown in the four different peak demand periods 

(summer afternoon, summer evening, winter afternoon, and winter evening)9 

around the NEM; 

● The effect of controlling the CSP plant dispatch strategy to aid in meeting evening 

peaks; and 

● Most importantly, the effect of different plant configurations on the IFC. 

 

Only three periods are shown here, as once a high level of TES is included, the winter 

afternoon period is not very different from the winter evening period. The full set of maps 

of IFC for each peak period (summer afternoon, summer evening, winter afternoon, and 

winter evening), for 0, 1, 3, 5, 10 and 15 hours of thermal storage are shown in Appendix 

3 and downloadable in Google Earth format at www.breakingthesolargridlock.net. A 

smaller subset of peak periods can be viewed live at the same web resource. 

 

                                                
9
 Summer and winter afternoons are 2 to 4pm; summer and winter evenings are 5 to 8pm. 
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Figure 21: Indicative firm capacity summer afternoon (3 hours storage)  

Figure 22: Indicative firm capacity summer and winter evenings (10 hours 
storage) 

Summer evening (10 hours storage) Winter evening (10 hours storage) 
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3.2.1 Characteristics of IFC in the four peak periods  

It should be noted that in the maps of the results, a fringe effect can be observed around 

the coastline, visible as a blue border. This is because the 2011 solar radiation data used 

in this work was added to an existing data set. The 2011 data came from a newer revision 

of the BOM solar data, where the BOM started to process grid cells around water bodies 

differently. Hence, the average of three years, where two of the years produce nil results 

around the coastline, tends to produce very low values. These should be ignored for the 

purpose of this study. 

 

In Figure 21, we see a plot for IFC across the NEM during summer afternoon peaks. This 

plot is quite characteristic and bears out a number of common features found throughout 

this study. First, coastal areas have lower values due to the weather systems that 

generally prevail on the coast. This is also true for tropical northern Queensland, where 

summers include monsoonal impacts and periods of high rainfall. Previous research 

undertaken by the Centre for Energy and Environmental Markets at University of New 

South Wales has found that in far northern Australia, CSP plants may often face DNI lulls 

in excess of seven days where there is insufficient solar radiation to capture any thermal 

energy; in such extended periods, the ability to operate would depend on energy available 

in storage or from backup fuels (Elliston et al. 2011). Second, we find that IFCs are 

somewhat higher the further west the plant is located (e.g. northern South Australia). 

 

In winter, Queensland sees higher IFCs because of the absence of monsoonal weather 

patterns. This can be seen by comparing the summer and evening plots with identical 

plant configuration (10 hours of storage) in Figure 22. 

 

Figure 23 shows, as an extreme case, the winter evening results for a plant with no 

thermal energy storage. The band across the map shows locations where IFCs are 

approaching zero simultaneously, as sunset falls within the period of interest (5 to 8pm on 

winter evenings). As the plot extends north, IFC increases because sunset occurs later. 
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Figure 23: Indicative firm capacity winter evening (no storage) 

 

 

3.2.2 Effect of controlling the dispatch strategy 

As noted earlier, the CSP model simulated plant output using a simple dispatch strategy, 

namely to generate electricity whenever it was possible to do so. For some configurations 

of solar multiplier and storage capacity, this leads to sub-optimal IFCs in the summer, and 

particularly so for the winter evening peak demand periods because thermal energy 

collected early in the day is consumed before the peak period occurs. In practice, a more 

sophisticated dispatch strategy would be employed that considers storage levels, solar 

forecasts, demand forecasts, prevailing market prices, as well as obligations to meet 

network constraints, in determining when the plant should best operate. 

 

To minimise the total computation required for the full set of peak demand periods, NEM 

regions and CSP configurations, this study chose a single dispatch strategy designed to 

improve correspondence of generation output with the peak. The model assumed 

generation does not begin until noon each day, unless this would lead to thermal energy 

being dumped, in which case, generation starts earlier. The model assumed that the plant 

shut down at midnight, and that generation resumed at noon the following day, or earlier if 

resumption at noon would result in dumping energy. While still rudimentary, this dispatch 

strategy produced significantly higher IFC results and is a reasonable first approximation 

of a dispatch strategy designed to meet peak demand in accordance with network support 

obligations. The IFCs presented are the results from this dispatch strategy.  
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3.2.3 Effect of technology configurations on IFC 

The study found that for summer afternoons, even one hour of storage makes a large 

difference to the IFC across all modelled NEM regions. IFC in inland areas improves 

slightly, while one hour of storage improves the IFC markedly closer to the coast, where it 

is likely to be more affected by transient cloud cover. The IFC improves again at three 

hours of storage, then reaches a point of diminishing returns. A 2pm peak is harder to 

meet if the CSP plant has no storage. A small amount of storage to carry thermal energy 

into the afternoon is sufficient in some locations. With five hours storage in the summer 

afternoon, most regions of New South Wales are achieving IFCs of over 90%, with the 

lowest IFC region, the southern Victorian coastline, at about 65%. 

 

These general observations also apply to summer evenings (Figure 22 on page 50). 

However, the IFCs decline slightly in the evening period due to the longer time between 

peak solar radiation and the network peak. It should be noted that many of the summer 

evening peak demands occur at 5pm because they are a continuation of the afternoon 

peak from 2pm to 4pm. This explains, to some degree, the similarity of results between 

summer afternoons and summer evenings. 

 

This study confirmed that CSP configurations with greater amounts of storage (and 

correspondingly higher solar multiples) generally deliver greater IFC, as would be 

expected. Areas in southern Victoria, northern Queensland and coastal regions tend to 

have significantly lower IFCs than inland regions, due to their climates and, in the case of 

Victoria, low latitude.  

 

The storage requirement is seasonal, with much less required for summer peak constraint 

events than for winter. Very little storage is required to reliably meet summer afternoon 

peaks. As noted above, IFCs for summer evening peaks are quite similar to summer 

afternoon peaks. In winter, IFC is less due to the lower solar resource (see Figure 22 on 

page 50). However, with ample storage and strategic dispatch of the plant, IFCs greater 

than 80% can be achieved in most locations. 

 

3.3 INSTALLING CSP AT GRID CONSTRAINED 

LOCATIONS: COST EFFECTS  

The network constraint mapping and IFC were integrated to determine whether CSP could 

remove the need for network augmentation at constrained locations in the NEM. 

Altogether, 93 constraints or constrained areas were considered, of which 67 had 

sufficient information to determine whether CSP could potentially alleviate the constraint. 

Sites are defined as being indicatively able to host a CSP plant sufficient to meet the 

constraint if: 

1) It is possible to connect a CSP plant sufficiently large to meet the constraint for the 

entire modelled period, including the forecast growth at the site; and 

2) The IFC at the site is at least 80% in the constraint season and time (that is, winter 

afternoon, winter evening, summer afternoon or summer evening) identified for 

that location. 
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For each location where CSP can indicatively meet the constraint, the cost benefit was 

calculated. Cost optimisation was first undertaken to find the most economic plant 

configuration that would meet the network requirements. This entailed calculating the cost 

benefit for each size of plant between the minimum that could meet the constraint, and the 

maximum that could be connected. This was undertaken for each level of storage 

between the minimum level that would deliver an IFC of 80%, and 15 hours. The outputs 

from the model are the cost benefit calculations for the optimum economic plant, the 

smallest plant which could meet the constraint, and the largest plant which could be 

connected.  

 

The cost benefit was calculated from the LCOE for the particular plant configuration, less 

the projected revenue including electricity sales, LGC sales and the contribution of a 

network support payment. The network support payment assumes the entire 

augmentation is avoided, and is based on 80% of the proposed network investment, 

reflecting the fact that electricity generation (of any type) cannot replicate the certainty 

offered by wires and poles. This also means the total societal cost of meeting network 

constraints is reduced by 20%. The support payment is calculated as an annual payment 

based on the cost of capital and the avoided depreciation, and is the same irrespective of 

plant size. The annual network support payment is divided by the annual generation to 

obtain a contribution per MWh.  

 

An interactive map and accompanying spreadsheet are available online, with details of the 

cost benefit calculation at each location, at: www.breakingthesolargridlock.net. 

 

3.3.1 Can CSP avoid the need to augment the network? 

Sixty-seven constrained locations with sufficient information to make a determination were 

examined, which indicated that CSP could avoid the need for network augmentation at 48 

locations, or in 72% of cases. If only locations where DNI is greater than 21 MJ/m2/day 

are included, CSP can avoid the need for augmentation at 94% of locations.  

 

The results for each state are shown in Table 16. When all sites are included, including 

those with DNI below 21 MJ/m2/day, Victoria has, unsurprisingly, the lowest percentage of 

sites where CSP can avoid the requirement for augmentation, essentially because sites 

with average DNI as low as 13.5 MJ/m2/day have been included in the overall analysis. 

The lowest DNI for the sites examined in other states respectively is 20 (QLD), 19.8 

(NSW) and 18.9 (SA). 

Table 16: Proportion of grid constrained locations where CSP could 
indicatively avoid the need for network augmentation 

  QLD NSW VIC SA NEM 

Number of locations where CSP could indicatively 
avoid the need for network augmentation 

20 7 17 4 48 

% of locations  87% 88% 53% 100% 72% 

Proportion of locations with DNI > 21 MJ/m2/day  90% 100% 100% 100% 94% 

Note: Excludes locations with insufficient information. 

http://www.breakingthesolargridlock.net/
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3.3.2 Cost benefit of CSP at grid constrained locations in the NEM 

Overall, CSP installation was found to have a positive cost benefit in 25% of the 

constrained locations examined with DNI greater than 21 MJ/m2/day, and to have a cost 

benefit greater than -$20/MWh at 36% of constrained locations, as shown for each state in 

Table 17.  

 

Table 17: Cost benefit of CSP installed at grid constrained locations with DNI 
> 21 MJ/m2/day 

 QLD NSW VIC SA All states 

Proportion of cost effective sites  30% 0% 14% 67% 25% 

Proportion of sites cost benefit > -$20/MWh 45% 17% 14% 67% 39% 

 

The optimisation, in most cases, indicated the maximum nameplate capacity possible, 

which was determined by the limitation imposed by the network connection point, or in 

some cases, by the limit of 120MW imposed in the model. This limit was imposed both 

because installation of higher MW of generation at constrained network locations could 

start to impose its own network augmentation costs, and because the cost formulation 

was developed for tower plants from 2 to 100MW. The limit of 120MW is close to present 

international experience, as the largest tower CSP plant with TES is currently 110MW 

(Solar Reserve ‘Crescent Dunes’, Tonopah, USA10 shown in Figure 24).  

 

Figure 24: 110MW tower CSP plant with TES in Tonopah, USA. 

 

Source: SolarReserve 10  

                                                
10

 http://www.solarreserve.com/what-we-do/csp-projects/crescent-dunes/ 
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Figure 25 shows where CSP could indicatively avoid the need for network augmentation 

at constrained locations in Queensland, and the cost benefit for the CSP developer. CSP 

can indicatively meet the constraint at twenty locations. Figure 26 shows where CSP 

could indicatively avoid the need for network augmentation at 25 constrained locations in 

New South Wales, Victoria and South Australia, and the cost benefit for the developer.  

 

Altogether, installation of 533MW of CSP at grid constrained locations was found to be 

cost effective during the next 10 years, and an additional 125MW had a cost benefit 

between -$20/MWh and $0/MWh. The plant configuration and LCOE at different locations 

are shown in Table 18, as determined by the optimisation. Across all states, the average 

plant size was 40MW, with 10 hours storage, and the average and lowest LCOE were 

$202/MWh and $111/MWh respectively.  

 

Installation of CSP plants at all of these locations would result in greenhouse gas 

reduction of 1.9 million tonnes per year, based on current average emissions factors for 

each state (Commonwealth of Australia 2012) and the capacity factor for the specified 

CSP plant.  

 

The network support payment was not found to be a crucial factor in most locations, 

although it certainly contributed to the overall cost effectiveness. As the optimisation 

process generally increased the plant size to the maximum able to be connected, this had 

the effect of diluting the contribution from the network payment when measured as a value 

per MWh of plant output.  

 

The largest network support payment contribution calculated was $134/MWh, and the 

average $15/MWh. The average at cost effective sites was somewhat higher, at 

$31/MWh. 

 

Table 18: Plant configuration and LCOE - variation across states  

 QLD NSW VIC SA All states 

Average storage hours 8hrs 13hrs 14hrs 3hrs 10hrs 

Average size (MWe) 42MWe 43MWe 64MWe 58MWe 49MWe 

Average LCOE ($/MWh)  $194   $220   $189   $267   $202  

Lowest LCOE($/MWh)  $111   $161   $134   $157   $111  
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Figure 25: Queensland - potential ‘network positive’ CSP installations  

 

  

KEY FOR LOCATIONS 

 
Cost benefit 

$/MWh 
Size Year 

  
Cost benefit 

$/MWh 
Size Year 

A Charleville ZS $67 20 MW 2022 K Blackwater ZS -$45 22 MW 2018 

B St George  ZS $60 27 MW 2022 L Dysart BSP -$48 120 MW 2015 

C Roma BSP $41 120 MW 2022 M Warwick BSP -$48 111 MW 2017 

D Emerald ZS $17 70 MW 2020 N Stanthorpe ZS -$49 20 MW 2017 

E Clermont  ZS $2 20 MW 2023 O Chinchilla Town ZS -$87 16 MW 2017 

F Yarranlea ZS $2 30 MW 2024 P Pampas  ZS -$91 11 MW 2019 

G Cape River  ZS -$4 20 MW 2022 Q West Warwick ZS  -$107 28 MW 2016 

H Torrington ZS -$7 55 MW 2021 R Clifton ZS -$118 8 MW 2022 

I Millchester BSP -$18 75 MW 2017 S West Dalby ZS -$137 15 MW 2016 

J Chinchilla BSP -$32 30 MW 2019 T Stanthorpe Town  -$168 15 MW 2017 
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Figure 26: NSW, SA and Vic - potential ‘network positive’ CSP locations  

 

KEY FOR LOCATIONS 

 

Cost 
benefit 
$/MWh 

Size  Year 
 

  
Cost 

benefit 
$/MWh 

Size  Year 

NEW SOUTH WALES 
  

VICTORIA 
   A Gunnedah supply -$11 95 MW 2019 L Wemen TS $18 77 MW 2021 

B Beryl TS -$66 95 MW 2016 M KGTS-SHL line -$49 58 MW 2016 

C Mudgee ZS -$100 19 MW 2019 N Wangaratta ZS -$54 66 MW 2018 

D TWT-QDI  line -$108 19 MW 2017 O Cobram East ZS -$61 38 MW 2017 

E GW-THA  line -$118 15 MW 2015 P Boundary Bend ZS -$61 33 MW 2015 

F Bourkelands ZS -$129 13 MW 2018 Q Ballarat TS -$64 120 MW 2022 

G OR-BNY line -$153 18 MW 2016 R Merbein ZS -$67 26 MW 2015 

SOUTH AUSTRALIA 

  

S Eaglehawke ZS -$85 54 MW 2016 

H Monash TS $178 50 MW 2022 T Bendigo TS -$96 120 MW 2014 

I Hummocks TS $32 120 MW 2021 U Maryborough ZS -$97 27 MW 2019 

J Mt Barker S TS -$16 120 MW 2023 V Thomastown ZS -$159 84 MW 2019 

K Clare ZS -$173 10 MW 2016 W Melton ZS -$194 66 MW 2016 

     

X Sale ZS -$226 40 MW 2015 

     

Y Bacchus Marsh ZS -$298 27 MW 2014 



 INSTITUTE FOR SUSTAINABLE FUTURES  

 59 

 

2013 

Breaking the solar gridlock. Potential benefits of installing concentrating solar thermal 

power at constrained locations in the NEM 

3.3.3 Discussion 

Many factors affect the overall cost benefit of CSP at the locations examined, including 

the plant size, the DNI, and of course, the cost assumptions.  

 

The year of installation was found to be a key determinant of cost effectiveness in the 

modelling. Installation year has a complex effect on the economics, as it affects not only 

the projection for the revenue from sales, but the cost of the plant. A cost reduction of 4% 

per year was included in the modelling to allow for the learning curve projected for CSP, 

which was the mid-range of estimates for likely cost reduction (see Section 2.4.1 for 

details). This results in a 39% reduction in costs by 2024.  

 

In order to test the effect of the installation year, the cost optimisation model was rerun 

with all constraints set to the same year, and the year varied from 2015 to 2022. The 

results are shown in Figure 27. As can be seen, the installation year has a significant 

effect. By 2022, 80% of all sites have cost benefit greater than -$20/MWh.  

 

Figure 27: Effect of installation year on cost benefit  

 

 

The effect of plant size and DNI was then examined with the year set to a single value for 

all constraints. These effects are shown in Figure 28 and Figure 29. As can be seen, DNI 

had the most consistent effect.  
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Figure 28: Effect of plant size on cost benefit (installation year 2018) 

 

 

Figure 29: Effect of DNI on cost benefit (installation year 2018) 
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4 CASE STUDIES 

Five case studies were undertaken, at locations in each NEM state, other than Tasmania. 

These are shown in Table 19, along with the assessed optimum plant size, the proposed 

augmentation year, the contribution of the network support payment per MWh, and the net 

benefit. Seven plant and economic summaries are shown in Table 19, as there was a very 

large spread of proposed network investment at Riverland (SA), and two locations were 

examined for generation to alleviate the Gunnedah supply constraint.  

Table 19: Case study overview 

 
Network 
operator 

Optimum 
plant  

MW/ TES 

Proposed 
network 

augmentation 
year and cost 

Network 
payment 
$/MWh 

Net 
benefit 
$/MWh 

The Riverland 
(line replacement) 

ElectraNet 40MW, 5hrs 2022, $226m $110 $144 

The Riverland 
(line upgrade) 

ElectraNet 130MW, 5hrs 2022, $10m $1 $60 

Wemen Powercor 77MW, 5hrs 2021, $12m $3 $23 

Charleville Ergon 20MW, 5hrs 2022, $70m $6 $16 

Millchester Ergon 40MW, 15hrs 2017, $46m $16 -$29 

Gunnedah supply 
(CSP at Moree) 

Transgrid 50 MW, 5hrs 2019, $24m $9 -$13 

Gunnedah supply 
(CSP at 
Gunnedah) 

Transgrid 50 MW, 5hrs 2019, $30m $13 -$39 

 

Overall, the study found that CSP installed at case study locations would be able to delay 

or avoid entirely the planned network augmentation in all cases, and provide similar 

reliability to a traditional network solution in four of the five cases.  

 

Strategies to achieve sufficient reliability varied according to the network requirements at 

each location. In four locations (two in Queensland, one in New South Wales and one in 

South Australia), the gas boiler normally installed as part of a CSP plant was modelled as 

oversized in order to provide emergency backup. Network requirements were to provide 

on–demand operation at these locations, and there were periods in each year where CSP 

would not provide sufficient certainty. It is expected that total gas use would be minimal, 

as the purpose is to provide emergency backup in the event that required network support 

falls outside of a period when the CSP is generating.  

 

In the fifth location (Wemen in Victoria), CSP could not provide certainty of generation by 

the end of the forecast period, as there could be a capacity shortfall for up to 80% of the 

time. However, it is likely that CSP could reduce the likelihood of a capacity shortfall by 
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75% to 80%, which may be sufficient to defer the investment significantly, certainly 

beyond the study period. 

 

The network support payment was not generally found to be a decisive factor in the 

economic outcome, other than in the Riverland case study where the network payment 

could provide $110/MWh if the investment from the higher cost augmentation was 

transferred to the CSP. In other cases, the value varied from $1/MWh to $16/MWh.  

 

One unexpected observation from the case studies was the modelled effect of storage 

hours on the average revenue of the CSP plant; specifically the correlation of plant 

revenues with peak prices. In this work, storage hours and solar multiple were not varied 

independently, so the capacity factor increased with the storage hours. One effect of this 

was that the ratio of optimised revenue to average pool price was lower at five hours TES 

than with zero hours, and fell again as the storage increased to 15 hours. The study did 

not test this effect for one and three hours storage configurations, however modelling of 

those effects could be expected to indicate that the ratio would increase somewhat from 

zero hours storage, and then fall again at five hours storage. Longer storage hours has an 

averaging effect in this study’s modelling of revenue. 

 

There are alternative strategies for designing a plant to follow peak prices, for example, 

reducing the solar multiple relative to the storage or nameplate capacity of the power 

block. The project modelled an increase in the power block relative to the solar multiple, to 

see if this would be positive overall for revenue. While the revenue multiplier for optimised 

revenue relative to pool price increased significantly, this was more than outweighed by 

the increase in LCOE as the capacity factor fell. However, more sophisticated scenario 

modelling of plant configuration options and dispatch strategies could lead to improved 

cost-benefit outcomes in specific circumstances. 

 

The specific constraint and draft results were discussed in a workshop with the relevant 

DNSP or TNSP, in order to define minimum requirements for plant operation, set 

parameters on plant size, and inform the cost benefit analysis.  

 

In each case study location, weather records for three years (2009/10, 2010/11 and 

2011/12) were used to obtain a generation profile for 0, 5, 10 and 15 hours of storage for 

each year. This was used to derive economic and performance data, specifically:  

 The potential for revenue optimisation relative to average pool prices, to derive a 

specific multiplier for the location;  

 The number of days per year on which generation hours were below the relevant 

thresholds, as defined in the workshops; and  

 The performance of the CSP plant at peak times, by comparison of the modelled 

CSP generation for the relevant year to the hourly demand data for the same year.  

 

Simple cost benefit analyses were undertaken for a potential CSP plant at the location, 

using data derived from modelling and information from the case study workshops. The 

LCOE was compared to the projected revenue, including an annual network support 

payment, to obtain an overall projected cost benefit per MWh generated. Details of the 

case study methodology are given in Section 2.5. 
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CASE STUDY: MILLCHESTER, QUEENSLAND 

Emerging network constraint description 
Millchester 132/66kV BSP is supplied by a single 132kV line from Ross, with partial 

backup via a 66kV line from Clare South and Stuart. Under the relevant Security of Supply 

criteria, the substation requires full n-1 security, that is, supply should be maintained in the 

event of one element in the network becoming unavailable. There is a proposal to build a 

second 132kV line to meet this Security of Supply criteria by 2017, at an estimated cost of 

$46 million. 

Operational requirements to avoid network augmentation 
An alternative to line augmentation is to provide local generation that could operate in the 

event of a line failure. In discussion with Ergon Energy, a minimum requirement was 

established that such a plant should be able to supply 20MW on demand, for eight hours 

per day, for a maximum of two consecutive days.  

Plant operation was simulated using weather records for 2008/09, 2009/10 and 2010/11 

to see whether there were days when a CSP plant would have been unable to dispatch 

for eight hours on demand. In those years, even a CSP plant with fifteen hours storage 

had between 60 and 119 days with less than eight dispatch hours at full power.  

However, CSP plants usually include gas-fired boilers to pre-heat the storage and for cold 

starts, with the boiler sized to meet 25% of the plants electrical output. In order to 

effectively meet the network requirement, the plant could oversize the boiler sufficiently to 

meet the full 20MW output if needed. The additional cost was found to be relatively low, 

and this solution would provide equivalent certainty to the provision of a gas generator.  

Economics 
Two revenue models were considered: a pool price option , in which the plant is assumed 

to operate to take advantage of peak prices, and a power purchase agreement (PPA) at a 

fixed price. In the pool price option, three to five hours storage (or a lower solar multiplier) 

was generally found to be more effective as it allows the operator to follow peak prices, 

whereas higher storage levels give a lower LCOE, and thus, the best return with a fixed 

price PPA. Note that the study did not vary solar multiple and storage hours 

independently. In this case, the 15 hours storage case performed slightly better in both the 

pool price and the PPA option.  

Details of the constraint and the optimum plant configurations are shown in Table 20 and 

Table 21, along with the LCOE and revenue streams in both the pool price and the PPA 

cases. The PPA calculations assume a base price of $105/MWh, including electricity and 

the LGC, with a real increase of 4.5% per year. The annual network payment is calculated 

by applying a factor of 0.8 to the total proposed investment, and then assuming the 

payment would be the WACC x the avoided investment + the average avoided 

depreciation. 

Outcome  
CSP could avoid the need for network augmentation in this location. Net incomes are 

negative in 2017, and a 20% to 30% cost reduction would be needed to break even. By 

2020, economics are positive, with a 10% cost reduction or capital grant.  
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Table 20: Millchester 132/66kV BSP – constraint details 

Proposed network investment $46m Augmentation year 2017 

Support required 20MVA Constraint type n-1 security of supply 

Annual network payment $3.4m DNI 23.3 MJ/m2/yr 

Table 21: Economics for optimum plant commissioned 2017 - Millchester  

  Pool price calculations  PPA 
calculations (1)  Carbon price No carbon price 

Plant capacity 40MWe  40MWe 

Thermal storage 15 hours  15 hours 

Solar multiple 2.8  2.8 

Gas boiler  60MWth  60MWth 

Capacity factor 62%  62% 

Total plant cost (2) $367m  $367m 

Specific investment (AU$m/MW) $9.2m  $9.2m 

Cost benefit calculation     

LCOE ($/MWh) $174 $174 $174 

Electricity sales ($/MWh)  $74 $50 $129 (2) 

LGC ($/MWh) $46 $72  

NSP contribution to LCOE ($/MWh) $16 $16 $16 

NET BENEFIT OR LOSS ($/MWh) -$38 -$42 -$29 

Capital grant to break even 25% 30% 20% 

Notes 1) This is the 10 year average of a base PPA of $105 with an annual real increment of 

4.5%. Note that the PPA includes the LGC. 

2) Includes $1.4m to increase the boiler size, and $20.3m connection costs. 

Table 22: Cost benefit ($/MWh) with varying levels of capital grant or cost 
reduction by year, assumes $105/MWh PPA (incl. LGC) - Millchester  

Plant: 40MWe, 15hrs storage COST REDUCTION     x 

Year 0% 5% 10% 15% 20% 25% 30% 

2015 -$44 -$36 -$27 -$19 -$10 -$2 $7 

2017 -$29 -$22 -$14 -$6 $2 $10 $17 

2019 -$15 -$8 -$0 $7 $14 $21 $28 

2020 -$7 -$1 $6 $13 $20 $27 $34 

Note: Calculations are based on the 10 year average revenue from a $105 PPA with an annual 

increment of 4.5%. The PPA includes the LGC. 
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CASE STUDY: CHARLEVILLE, QUEENSLAND 

Emerging network constraint description   
Charleville 66/22/11kV zone substation is supplied by a single 66kV line from Roma, with 

the supply continuing to Cunnamulla and Quilpie. If demand reduction is not sourced to 

keep load under 15MVA, it is expected that an n-1 Security of Supply criteria will apply 

soon after 2020. The expected network augmentation cost is $70 million. Ergon Energy 

may consider installing CSP generation as an alternative to network augmentation.  

Operational requirements to avoid network augmentation 

An alternative to line augmentation is to provide local generation that could operate in the 

event of a line failure. In discussion with Ergon Energy, a minimum requirement was 

established that such a plant should be able to supply 20MW on demand, for eight hours 

per day, for a maximum of two consecutive days.  

Plant operation was simulated using weather records for 2008/09, 2009/10 and 2010/11 

to see whether there were days when a CSP plant would have been unable to dispatch 

for eight hours on demand. In those years, even a CSP plant with fifteen hours storage 

had between 38 and 74 days with less than eight dispatch hours at full power.  

However, CSP plants usually include gas-fired boilers to pre-heat the storage and for cold 

starts, with the boiler sized to meet 25% of the plants electrical output. In order to 

effectively meet the network requirement, the plant could oversize the boiler sufficiently to 

meet the full 20MW output if needed. The additional cost was found to be relatively low, 

and this solution would provide equivalent certainty to the provision of a gas generator.  

Economics 
The optimum economic plant configuration was 20MW with three hours storage, but this 

was increased to a minimum of five because of the nature of the constraint. Two revenue 

models are considered, a pool price option , in which the plant is assumed to dispatch to 

take advantage of peak prices, and a power purchase agreement (PPA) at a fixed price. 

In the pool price option, three to five hours storage (or a lower solar multiplier) is more 

effective as it allows the operator to follow peak prices, whereas higher storage levels give 

a lower LCOE, and thus, the best return with a fixed price PPA. Note that the study did not 

vary solar multiple and storage hours independently. 

The details of the constraint and the optimum modelled plant configurations are shown in 

Table 23 and Table 24 for the pool price and the PPA cases, as well as the LCOE and 

revenue streams. The PPA calculations assume a base price of $105/MWh (including the 

LGC), with a real increase of 4.5% per year. A multiplier of 1.2 is used to adjust the 

projected revenue from average pool prices, with the multiplier calculated by modelling the 

effect of optimising dispatch for the specific plant configuration at this location using three 

years weather data. The annual network payment is calculated by applying the WACC to 

80% of the total proposed investment, and adding the avoided depreciation.  

Outcome  
CSP could avoid the need for network augmentation at this location. Economics are 

positive in two out of three cases modelled, with a net benefit of $8 to $16/MWh. Table 25 

shows the effect of capital cost reductions, beyond those modelled, by year. Costs are 

likely to be positive from 2021, and a 10% cost reduction would bring that forward to 2019.  
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Table 23: Charleville 66/22/11 ZS – constraint details 

Proposed network investment   $70m Augmentation year 2022 

Support required 20MVA Constraint type n-1 security of supply 

Annual network payment  $5.2m DNI 25.1 MJ/m2/yr 

Table 24: Economics for optimum plant commissioned 2022, Charleville 

  Pool price calculations (1) PPA 
calculations (2)  Carbon price No carbon price 

Plant capacity 40MWe  40MWe 

Thermal storage 5 hours  15 hours 

Solar multiple 1.9  2.8 

Gas boiler  60MWth  60MWth 

Capacity factor 47%  69% 

Total plant cost (3) $225m  $290m 

Specific investment (AU$m/MW) $5.6m  $7.3m 

Cost benefit calculation     

LCOE ($/MWh) $140 $140 $125 

Electricity sales ($/MWh)   $134 $73 $129 

LGC ($/MWh) $16 $60  

NSP contribution to LCOE ($/MWh) $6 $6 $4 

NET BENEFIT OR LOSS ($/MWh) $16 -$1 $8 

Capital grant to break even  1%  

Notes 1) A multiplier of 1.2 is used to increase the average pool price projection. 

2) This is the 10 year average of a base PPA of $105/MWH with an annual real 

increment of 4.5%. Note that the PPA includes the LGC. 

3) Includes $1.4m to increase the boiler size, and $20.3m connection costs. 

Table 25: Cost benefit ($/MWh) with varying levels of capital grant or cost 
reduction by year – Charleville 

Plant: 40MWe, 15hrs storage COST REDUCTION    xx 

Year 0% 5% 10% 15% 20% 25% 30% 

2015 -$39 -$31 -$24 -$16 -$8 -$1 $7 

2017 -$26 -$19 -$11 -$4 $3 $10 $17 

2019 -$12 -$6 $1 $7 $14 $20 $27 

2021 $1 $7 $13 $19 $25 $31 $36 

Note: Calculations are based on the 10 year average revenue from a $105 PPA with an annual 

increment of 4.5%. The PPA includes the LGC. 
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CASE STUDY: GUNNEDAH-NARRABRI-
MOREE SUPPLY, NEW SOUTH WALES 

Emerging network constraint description 

A new line is proposed to link the Tamworth and Gunnedah TS to provide additional 

supply capacity to the Gunnedah-Narrabri-Moree area. The need arises because of 

projected load growth, including new spot loads from mining, and issues with the line 

between Tamworth and Gunnedah (Country Energy & Transgrid 2011). Up to 40MW of 

support may be required at peak times. The optimum location for support is Gunnedah, 

although lower value support could also be provided at Narrabri or Moree.  

Operational requirements to avoid network augmentation 
An alternative to line augmentation is to provide local generation that could operate at 

peak time to reduce the load on transmission lines supplying the area. Generators would 

be required to start up within 15 minutes of overload on the supply line, or alternatively 

generate pre-emptively at peak periods, as the network is not allowed to shed loads at 

these supply points. Pre-emptive generation is the preferred option.  

Support is likely to be required at peak times during summer afternoons and winter 

evenings. The winter peak is usually 5.30 to 6.30pm, and could require generation 

between 4 and 8pm. We therefore defined the minimum requirement for CSP to avoid the 

need for augmentation as the ability to generate on demand for up to four hours.  

Plant operation was simulated using weather records for 2008/09, 2009/10 and 2010/11 

to see whether there were days when a CSP plant would have been unable to dispatch 

for four hours on demand. In those years, even a CSP plant with 15 hours storage had 

between 15 and 33 days with less than four dispatch hours at full power.  

However, CSP plants usually include gas-fired boilers to pre-heat the storage and for cold 

starts, with the boiler sized to meet 25% of the plants electrical output. In order to 

effectively meet the network requirement, the plant could oversize the boiler sufficiently to 

meet the full 40MW output if needed. The additional cost was found to be relatively low, 

and this solution would provide equivalent certainty to the provision of a gas generator.  

Economics 
The optimum plant economic plant configuration was 50MW (the largest that could easily 

be connected), with five hours storage. Two revenue models are considered, a pool price 

option , in which the plant is assumed to dispatch to take advantage of peak prices, and a 

power purchase agreement (PPA) at a fixed price. In the pool price option, lower storage 

(or a lower solar multiplier) is more effective as it allows the operator to follow peak prices, 

whereas higher storage levels give a lower LCOE, and thus, the best return with a fixed 

price PPA. Note that the study did not vary solar multiple and storage hours 

independently. 

The details of the constraint and the optimum modelled plant configurations are shown in 

Table 26 and Table 27 for the pool price and the PPA cases, as well as the LCOE and 

revenue streams. The PPA calculations assume a base price of $105/MWh (including the 

LGC), with a real increase of 4.5% per year. A multiplier of 1.2 is used to adjust the 

projected values for average pool price, calculated by analysing the modelled effect of 

optimising dispatch for the specific plant configuration at this location using three years 

weather data. The annual network payment is calculated by applying the WACC to 80% of 

the total proposed investment, and adding the avoided depreciation.  
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Table 26: Gunnedah supply – constraint details 

Proposed network investment   $30m Augmentation year 2019 

Support required 40MVA Constraint type Growth 

Annual network payment  $2.2m DNI 22.2 MJ/m2/yr 

 

Table 27: Economics for optimum plant commissioned 2019 at Gunnedah  

  Pool price calculations (1) PPA 
calculations (2)  Carbon price No carbon price 

Plant capacity 50MWe  50MWe 

Thermal storage 5 hours  15 hours 

Solar multiple 1.9  2.8 

Gas boiler CSP  129MWth  129MWth 

Capacity factor 38%  56% 

Total plant cost (3) $324m  $426m 

Specific investment (AU$m/MW) $6.5m  $8.5m 

Cost benefit calculation     

LCOE ($/MWh) $194 $194 $177 

Electricity sales ($/MWh) $108 $62 $129 

LGC ($/MWh) $35 $69   

NSP contribution to LCOE ($/MWh) $13 $13 $9 

NET BENEFIT OR LOSS ($/MWh) -$39 -$50 -$39 

Capital grant to break even 25% 30% 25% 

Notes 1) A multiplier of 1.3 is used to increase the average pool price projection. 

2) This is the 10 year average of a base PPA of $105/MWH with an annual real 

increment of 4.5%. Note that the PPA includes the LGC. 

3) Includes $2.5m to increase the boiler size, and $29.3m connection costs. 

 

Outcome  
CSP installed at Gunnedah could avoid the need for network augmentation, but the 

economics are not positive in 2019, with a cost gap of $14 to $25/MWh. A capital cost 

reduction or grant of 25% to 30% would be needed to achieve a positive cost benefit in 

2019. Table 29 shows effects of different levels of cost reduction on the net benefit; at 

2021, a 15% to 20% capital cost reduction would result in a positive net cost.  

The level of network support per MWh is quite low ($13/MWh), and other areas in the 

constrained area have better solar resource, so a brief evaluation of the potential effects 

of relocating the plant to Moree was undertaken. The potential network payment was 

revised downwards by 20%, to reflect the indicative value Transgrid placed on support at 

a non-optimum location. The economics of a plant at Moree are shown in Table 28, and 
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appear more favourable as the effect of the higher DNI outweighs the reduced network 

payment. However, the project scope did not extend to the exploration of whether a CSP 

plant in Moree could effectively eliminate the need for network augmentation at 

Gunnedah.  

 

Table 28: Economics for optimum plant commissioned 2019 at Moree 

  Pool price calculations (1) PPA calculations 
(2)  Carbon price No carbon price 

Plant configuration  As in Table 24   As in Table 24 

DNI 24.1  24.1 

Capacity factor 46%  67% 

Annual network payment $1.5m  $1.5m 

Cost benefit calculation     

LCOE ($/MWh) $164 $164 $149 

Electricity sales ($/MWh)   $108 $62 $129 

LGC ($/MWh) $35 $69  

NSP contribution to LCOE ($/MWh) $9 $9 $6 

NET BENEFIT OR LOSS ($/MWh) -$13 -$24 -$14 

Capital grant to break even 10% 20% $12% 

Notes 1) A revenue multiplier of 1.3 is used to adjust the average pool price projection. 

2) This is the 10 year average of a base PPA of $105/MWH with an annual real 

increment of 4.5%. Note that the PPA includes the LGC. 

 

Table 29: Cost benefit ($/MWh) with varying levels of capital grant or 
additional cost reduction by year – Gunnedah supply, plant located at 
Gunnedah 

Plant: 50MWe, 15hrs storage COST REDUCTION    xx 

Year 0% 5% 10% 15% 20% 25% 30% 

2015 -$71 -$61 -$52 -$42 -$33 -$23 -$14 

2017 -$55 -$46 -$37 -$28 -$20 -$11 -$2 

2019 -$39 -$31 -$23 -$14 -$6 $2 $10 

2021 -$23 -$15 -$8 -$1 $7 $14 $21 

Note: Calculations are based on the 10 year average revenue from a $105 PPA with an annual 

increment of 4.5%. The PPA includes the LGC.  
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CASE STUDY: THE RIVERLAND (MONASH), 
SOUTH AUSTRALIA 

Emerging network constraint description  

The Riverland area currently relies on the western Victorian network for support at peak 

load times. This support may be constrained in the future if both South Australian and 

Victorian networks peak at the same time. It is likely that system augmentation will be 

required by 2022 to ensure that the network continues to meet its n-1 reliability 

requirement. This means that the network is not allowed to shed load, even momentarily, 

following any single contingency. Options range from incremental uprating of 132kV 

network at a cost of $10m, to construction of a new 275kV supply at a cost of $226m. The 

preferred option would be determined by the Regulatory Investment Test for Transmission 

(RIT-T).11 

 

Operational requirements to avoid network augmentation 

An alternative to network augmentation is to provide local generation that could operate at 

times when the Victorian network is unable to provide the level of support required. At 

peak load conditions, the Riverland transmission network currently relies on the Victorian 

network supplying up to 25MW, and the need is expected to rise to about 40MW over 10 

years.  

The year 2010/11 hourly demand profile data was used to determine the duration of the 

required support for current and forecast load. This was compared to modelled hours of 

operation for a CSP plant using 2010/11 weather data for the location.  

Table 30 shows the hours of unmet demand for CSP with different levels of storage, 

assuming the plant is sized at the nameplate capacity required to supply the maximum 

support required. At the start of the period, there are no unmet hours for any plant 

configuration, rising to between 7 and 51 unmet hours by the end of the period. However, 

there are several alternative strategies to maintain supply. Firstly, a CSP plant can 

dispatch at part load in order to maintain supply, effectively extending the storage hours. 

Thus, a 130MW plant can extend five hours TES to 15 hours dispatch at 30MW, if the 

need arises. An alternate strategy is that CSP plants usually include gas-fired boilers to 

pre-heat the storage and for cold starts, with the boiler sized to meet 25% of the plant’s 

electrical output. Oversizing the gas boiler allows the plant to continue dispatching at 

nameplate capacity for a period of hours, with the length of time only limited by the gas 

storage tank. The additional cost is relatively low compared to the CSP installation cost.  

Table 30 Minimum ability of CSP to meet demand, Riverland (5 to 15hrs TES) 

Thermal storage 5hr  10hr 15hr 5hr  10hr 15hr 

 START OF PERIOD  END OF PERIOD 

Percentage of unmet hours 0% 0% 0% 16% 6% 2% 

Number of hours unmet demand 0 0 0 51 19 7 

Number of days with unmet demand 0 0 0 11 5 3 

                                                
11

 http://www.aer.gov.au/node/8865 
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Two plants were considered, a 130MW plant and a 40MW plant with oversized boilers, as 

these were the smallest and largest sizes which could potentially avoid the need for 

augmentation. Both sizes of plant were considered with 5 hours and 15 hours of storage. 

Economics 
The optimum plant configuration for the $226m network investment case for the pool price 

and the power purchase agreement (PPA) cases is 40MW, with five hours storage. 

Details of the constraint are shown in Table 31. The optimum plant configuration is shown 

in Table 32, along with the LCOE and revenue streams. The lower network investment 

case is shown in Table 33. In this case, the optimum plant is the largest able to be 

connected (130MW), and the storage configuration depends on whether the plant will be 

operated to take advantage of peak prices, described here as pool price option , or 

whether the revenue is assumed to be via a PPA at a fixed cost. In the first case, three to 

five hours storage is more effective as it allows the operator to follow peak prices, 

whereas higher storage levels give the lower LCOE, and thus the best return with a PPA.  

The PPA calculations assume a base price of $105/MWh, including the LGC, with a real 

increase of 4.5% per year. A multiplier of 1.6 is used to adjust the projected values for 

average pool price, as CSP generation tends to follow peak prices. The multiplier is 

calculated by analysing the modelled effect of optimising dispatch for the specific plant 

configuration at this location using three years weather data. The annual network payment 

is calculated by applying a factor of 0.8 to the total proposed investment, and then 

assuming the payment would be the WACC multiplied by the avoided investment, plus the 

average avoided depreciation.  

Outcome  
CSP has the potential to avoid the need for network augmentation in the Riverland area, 

providing a similar level of reliability to a network solution by oversizing the plant, or by 

oversizing the gas boiler. If the full network augmentation ($226m) is planned, the 

optimum modelled plant configuration is 40MW, with five hours storage and an oversized 

gas boiler. If the smaller network augmentation ($10m) is planned, a larger plant is more 

economic, with five hours storage in the pool price option, and 15 hours storage in the 

PPA option.  

Economics are extremely favourable if network investment of $226m is avoided, with an 

overall net benefit of between $110 and $144/MWh. The plant modelled is to be 

commissioned in 2022, as that is when the network is expected to require support. 

However, the plant would be economic in 2014, provided the network support payment 

was included. 

If the potential network investment eventuates to be $10m rather than $226m, the cost 

benefit is still positive, but reduced. The optimum plant in this case is 130MW, with five 

hour TES in the pool price revenue case, and 15 hours TES in the PPA case. The net 

benefit is between $12 and $60/MWh. In this case, the plant would be economic from 

2017 to 2020.  

Table 31: Riverland area – constraint details 

Proposed network investment $216m OR $10m  Augmentation year 2022 

Maximum support required 40MVA Constraint type n-1 reliability 

Annual network payment $16.6m OR $0.7m DNI 23.3MJ/m2/yr 
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Table 32: Economics for optimum plant at Riverland ($216m investment) 

Plant characteristics   

Plant capacity 40MWe Gas boiler  120MWth 

Thermal storage 5 hours  Capacity factor 43% 

Solar multiple 1.9 Total plant cost  (3,5) $216m 

  Specific investment  $5.4m/MW 

Cost benefit calculation  
Pool price calculations (1) PPA 

calculations 
(2) Carbon price No carbon price 

LCOE ($/MWh) $146 $146 $146 

Electricity sales ($/MWh)   $93 $93 $129 

LGC ($/MWh) $87 $60  

NSP contribution to LCOE ($/MWh) $110 $110  

NET BENEFIT OR LOSS ($/MWh) $144 $117 $110 

Table 33: Economics for optimum plant at Riverland ($10m investment) 

 Pool price calculations (1) PPA 
calculations (2)  Carbon price No carbon price 

Plant capacity 130MWe  130MWe 

Thermal storage 5 hours  15 hours 

Solar multiple 1.9  2.8 

Gas boiler 120MWth  120MWth 

Capacity factor 43%  63% 

Total plant cost (3,4) $589m  $833m 

Specific investment (AU$m/MW) $4.5m  $6.4m 

Cost benefit calculation    

LCOE ($/MWh) $122 $122 $118 

Electricity sales ($/MWh) $164 $93 $129 

LGC ($/MWh) $16 $60  

NSP contribution to LCOE ($/MWh) $1 $1 $1 

NET BENEFIT OR LOSS ($/MWh) $60 $33 $12 

Notes 1) A multiplier of 1.6 is used to increase the average pool price projection. 

2) A base PPA of $105 is used (including LGC), with an annual real increment of 4.5%. 

3) Includes $10m connection costs. 

4) Includes $0.4m to oversize the gas boiler (130 MW CSP.) 

5) Includes $2.8m to oversize the gas boiler (40 MW CSP). 



 INSTITUTE FOR SUSTAINABLE FUTURES  

 73 

 

2013 

Breaking the solar gridlock. Potential benefits of installing concentrating solar thermal 

power at constrained locations in the NEM 

CASE STUDY: WEMEN, VICTORIA 

Emerging network constraint description 

The Wemen TS was commissioned in 2012 with a single transformer. In the event of a 

transformer failure, some customers may lose supply. Part of the load can be transferred 

to the Redcliff TS, with a limitation on the supply to Boundary Bend, Wemen, and 

Robinvale of 51MVA. Powercor estimated the value of customer reliability would equal the 

cost of a new transformer ($12m) in 2021 (Jemena et al. 2012), although this may be 

brought forward as load growth has exceeded expectations in this area (Garvey 2013).  

 

Operational requirements to avoid network augmentation 
If a generator was connected at Wemen, this could avoid the need to install an additional 

transformer, if it could deliver the support required. The maximum support in 2021 is 

estimated at 35MW, potentially rising to 65MW over a 10 year period. The mean 

replacement time for a transformer is two months, which means avoiding the need for 

augmentation could require sustained periods of generation.  

The available demand data for 2010/11 for the line supplying the three substations from 

Redcliff TS prior to the Wemen TS being commissioned was adjusted to include the 

projected growth, in order to obtain an hourly profile of when support would be required 

over and above what could be transferred to Redcliff in the event of a transformer failure. 

Winter months were excluded, as Powercor’s modelling indicates that the transfer to 

Redcliff would not be constrained in the winter period (Garvey 2013). If the projected 

average annual growth rate from 2014 to 2021 (3.1% per year) is held constant over the 

10 years from 2021 to 2031, support would be required for just over 4,300 hours per year 

by 2031, or nearly 50% of the time.  

The projected hours when support is required were compared to modelled hours when a 

CSP plant would have been generating in 2010/11 to determine whether a CSP plat with 

various configurations could meet demand in the event of a transformer failure.  

At the start of the period, CSP with 15 hours storage could reduce the likelihood of 

unsupplied energy by 92%. At the end of the period, the likelihood of unsupplied energy 

would be reduced by 72%. The number and proportion of unmet hours are shown in Table 

34, for a CSP plant with five hours and 15 hours storage.  

At the start of the period, there are approximately 182 hours where support would not 

have been available, rising to 1232 hours at the end of the period.  

Table 34: Potential unmet hours for CSP in the event of transformer failure 

 START  END 

5 HOURS STORAGE   

Required hours which are unmet  31% 53% 

Number of hours unmet demand 685 2309 

15 HOURS STORAGE   

Required hours which are unmet 8% 28% 

Number of hours unmet demand 182 1232 
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It is most cost effective to install the largest CSP plant, which is likely to be 77MW (the 

nameplate capacity of the TS). There is some potential for the operator to increase the 

amount of hours where support is delivered by running at part load, but this would not be 

sufficient to enable CSP to deliver, whenever needed, in the event of a failure.  

However, the risk of transformer failure is relatively low at 1% per year (Jemena et al. 

2012), so the reduction of risk by 72% at the end of the period may be sufficient to defer 

the augmentation.  

 

Economics 
The optimum plant configuration to increase network reliability is the maximum storage 

considered, 15 hours. However, as any network support payment will make a relatively 

small contribution to the plant economics, the low storage case of five hours was also 

examined. The optimum plant configuration depends on whether the plant will be 

operated to take advantage of peak prices, described here as pool price option , or 

whether the revenue is assumed to be via a power purchase agreement (PPA) at a fixed 

cost. In the first case, three to five hours storage is more effective as it allows the operator 

to follow peak prices, whereas higher storage levels give the lower LCOE, and thus the 

best return with a PPA. The optimum economic plant is the largest that could be 

connected.  

Details of the constraint are shown in Table 35. Details of the optimum plant are shown in 

Table 36, along with the LCOE and revenue streams. The PPA calculations assume a 

base price of $105/MWh (including the LGC), with a real increase of 4.5% per year. A 

multiplier of 1.4 is used to adjust the projected values for average pool price, with the 

multiplier calculated by analysing the effect that the optimising dispatch would have had 

on revenue for the specific plant configuration over the three years of 2008/09, 2009/10 

and 2010/11.The annual network payment is calculated by applying a factor of 0.8 to the 

total proposed investment, and then assuming the payment would be the WACC x the 

avoided investment + the average avoided depreciation. 

 

Outcome  
CSP has the potential to defer the need for network augmentation at the Wemen TS by 

reducing the likelihood of unserved hours by 72%, if this degree of reliability is determined 

as sufficient.  

Economics are favourably positive by 2019 in the lower storage case, assuming pool price 

sales, and are positive by 2021 in all cases. A capital grant, or cost reduction of 30%, is 

expected to make the plant cost positive by 2015, with the requirement for grant or cost 

reduction falling to 15% by 2017, as shown in Table 37. 
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Table 35: Wemen – constraint details 

Proposed network investment $12 million Augmentation year 2021 

Maximum support required 65MVA Constraint type n-1 reliability 

Annual network payment $0.9m DNI 23.4 MJ/m2/yr 

Table 36: Economics for optimum plant at Wemen ($12m investment) 

 Pool price calculations (1) PPA calculations 
(2)  Carbon price No carbon price 

Plant capacity 77MWe  77MWe 

Thermal storage 5 hours  15 hours 

Solar multiple 1.9   

Gas boiler CSP    

Capacity factor 43%  63% 

Total plant cost (3) $384m  $533m 

Specific investment (AU$m/MW) $5.0m  $6.9m 

Cost benefit calculation    

LCOE ($/MWh) $135 $135 $129 

Electricity sales ($/MWh)   $133 $77 $129 

LGC ($/MWh) $22 $65  

NSP contribution to LCOE ($/MWh) $3 $3 $2 

NET BENEFIT OR LOSS $23 $9 $2 

Notes 1) A multiplier of 1.4 is used to increase the average pool price projection. 

2) A base PPA of $105 is used (includes LGC), with an annual real increment of 4.5%. 

3) Includes $3.4m connection costs. 

Table 37: Cost benefit ($/MWh) with varying levels of capital grant or cost 
reduction by year – Wemen 

Plant: 77MWe, 5hrs storage COST REDUCTION    xx 

Year 0% 5% 10% 15% 20% 25% 30% 

2015 -$44 -$36 -$28 -$20 -$11 -$3 $5 

2017 -$22 -$15 -$7 $0 $8 $15 $22 

2019 $0 $7 $14 $21 $27 $34 $41 

2021 $23 $29 $35 $41 $47 $53 $59 

Note: Assumes pool price sales a multiplier of 1.4, and includes a carbon price. 
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5 CONCLUSIONS AND RECOMMENDATIONS 

This study confirms that CSP is a technically and commercially viable alternative to 

traditional network augmentation solutions in addressing electricity grid constraints. Its 

findings support the hypothesis that CSP can play a significant role in optimising costs in 

electricity networks with high levels of renewable energy generation capacity.  

The study identified $0.8 billion of potentially avoidable network investment, and 533MW 

of cost effective CSP which could be installed at grid constrained locations in the next 10 

years. Based on the current emissions intensity of electricity generation in each state, this 

would reduce greenhouse emissions by an estimated 1.9 million tonnes per year. 

Network support payments can play a role in increasing the cost effectiveness of CSP, 

and CSP installation can avoid or defer the requirement for network augmentation. The 

potential for cost effective installations will change as network forecasts are modified, as 

will the economics of any network augmentation proposal.  

A key finding is that, in order for CSP and other distributed energy solutions to compete 

effectively with traditional network solutions, the availability and accessibility of network 

information requires improvement. Network data should be harmonised, and rules 

established to enable project proponents easier access to timely data, in formats that 

support scenario modelling. The AEMC noted the value of more transparent network 

planning processes, including data access, in their 2012 review (Australian Energy Market 

Commission 2012). 

Ideally, NEM-wide constraint mapping should become a standardised process, and be 

available to all interested parties. This would require standardised data supply, perhaps to 

a central organisation such as AEMO. The authors consider that the output of the DANCE 

model could become a useful tool for distributed energy providers, network planners and 

policy makers, and could provide network service providers with a tool, not only for 

network planning, but to assist in the process of going to market for non-network 

solutions. This would require an easy system for updating, such as an automated import 

of the required data from each network service providers’ database. This may entail a 

requirement, like the New South Wales Demand Management code of practice,12 for 

network service providers to publish investment and constraint information in a particular 

format, or to submit such data annually to a database held by an external body.  

While Regulatory Investment tests have provided consistency and rigour in economic 

analysis of network investments, adjustments may be required in order for the benefits of 

CSP, and other forms of distributed generation, to be considered adequately and the 

benefits to be appropriately shared between network service providers, project proponents 

and consumers. 

The findings of this report support the conclusions of recent studies that electricity 

networks may achieve stable operation and appropriate reliability performance with high 

proportions of renewable energy generation (Denholm et al. 2013; AEMO 2013; Ellison, 

Iain MacGill & Mark Diesendorf 2013), and that CSP can play an important and 

economically efficient role in Australia’s future electricity system. 

                                                
12

 http://www.efa.com.au/Library/DMCode3rdEd.pdf  

http://www.efa.com.au/Library/DMCode3rdEd.pdf
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APPENDIX 1: THE DANCE MODEL  

The Institute for Sustainable Futures developed the DANCE model progressively during 

the CSIRO Intelligent Grid Research Program (iGrid) (Langham, Dunstan & Mohr 2011). It 

was further enhanced during its application to the assessment of decentralised energy 

opportunities in Greater Melbourne for Sustainability Victoria (Langham et al. 2011). Since 

these initial applications, the calculation logic has evolved and the GIS display features 

have been adapted for application to larger scale distributed CSP generators for the 

purposes of this research.  

 

This Appendix covers the calculations that occur within the latest iteration of the DANCE 

Model. It is split into two sections: 

1. Key calculations; and 

2. Method for handling incomplete data. 

 

6.1 KEY CALCULATIONS  

All of the following calculations are performed for three hierarchical levels of network 

assets:  

1. Distribution zone substations (ZS),  

2. Sub transmission lines or loops (Stli), and  

3. Transmission substations (TS) or bulk supply points (BSP).  

 

The calculations are conducted for each asset group separately.  

 

6.1.1 Net present value  

DANCE calculates the NPV of avoiding the construction of a network asset, such as 

through the construction of a strategically located CSP generator. ‘Avoidance’ is defined, 

for the purposes of this project, as the deferral of the construction of a network asset for 

10 years or more. This figure is intended to be useful to CSP or other decentralised 

energy project developers that are able to provide sufficient, contractually-secured 

generation or demand reduction to avoid the planned network augmentation for a period 

of 10 years, by offsetting the projected annual demand growth and / or providing 

associated voltage or reliability support. It is assumed that 10 years is the maximum 

period that the network operator would be willing to contract for non-network alternatives 

to network augmentation.  

 

The NPV in year Y is determined by the following equation:  

   ( )   
(         )    

(      )    
 

Where: 

WACC is the Weighted Average Cost of Capital,  

DEPR is the Depreciation Rate, 
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INVA is the Investment Amount (in $ millions) that is planned by the network at 

that location, 

DISR is the Discount Rate and 

CY is the Current Year (as specified in the global inputs to the model).  

 

The NPV for the asset is the sum of the yearly NPV amounts, from the current year to 

nine years after the proposed investment year. 

 

6.1.2 Available capacity  

These calculations determine the available supply capacity for each network asset over 

time. It is used to show which assets are approaching constraints that will need to be 

addressed in coming years through network or non-network options.  

 

To do this, we need to know the firm capacity of the asset in each season (commonly, 

network assets have lower capacities in summer when operating temperatures are higher) 

and the forecast demand in each season. This is used to determine the available capacity, 

and the year that demand exceeds capacity in each season, which is the basis for 

determining the critical peak season (whether an asset is winter or summer constrained, 

or both).  

 

The available capacity (ACAP) in a given season S and year Y, ACAP(S,Y), is determined 

by:  

    (   )     ( )      (   ) 

Where:  

ITP(S) is the Investment Trigger Point; that is, the level of demand (MVA) that 

triggers investment in the asset to occur. The ITP(S) is described in full in Section 

6.2.2, and 

MDEM(S,Y) is the forecast Maximum Demand in the given season and year.  

 

6.1.2.1 Year demand exceeds capacity  

Calculating the year that demand exceeds capacity (DECY) is important from the 

perspective of determining if there is sufficient time to build a non-network option to 

address the approaching constraint. The year demand exceeds capacity in a given 

season S, DECY(S), is the first year forecast demand exceeds the ITP. If forecast demand 

does not exceed the ITP by two years after the final year of study period, then DECY(S) is 

defined as ‘not a number’ (NAN). That is, the asset in question is unlikely to be 

constrained in the relevant time period and hence there is no need for investment.  

 

6.1.2.2 Constraint season  

The level of peak demand and the shape of the daily load profile are typically very 

different in summer and winter. The different load profiles have implications for the type of 

CSP plant that would be required, and whether CSP could effectively meet the constraint. 

As a result, it is important to determine which season and time of day the network asset is 

constrained.  
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The constraint season (CS) can be one of the following options: 

NONE, if DECY(S) is NAN for all seasons. In this case, the season used for analysis is the 

season with the largest demand in the final year. 

SUMMER, if DECY(SUMMER) has a value and DECY(WINTER) is NAN, or DECY(WINTER) – 

DECY(SUMMER) > 2  

WINTER, if DECY(WINTER) is not NAN and DECY(SUMMER) is NAN, or DECY(SUMMER) – 

DECY(WINTER) >2  

BOTH, if DECY(SUMMER) = DECY(WINTER), the season used for analysis is the season with 

the smallest available capacity in the demand exceeds capacity year.  

BOTH (SUMMER), if DECY(S) is not NAN for all seasons, and 0 < (DECY(WINTER) – 

DECY(SUMMER)) ≤ 2 

BOTH (WINTER), if DECY(S) is not NAN for all seasons, and 0 < (DECY(SUMMER) – 

DECY(WINTER)) ≤ 2. 

 

The ‘available capacity’ for an asset used in all subsequent calculations is simply the 

available capacity in the constraint season. 

 

6.1.3 Annual deferral value 

If a non-network investment, e.g. a CSP plant, can effectively defer investment in 

upgrading a network asset, then there is a financial benefit to the network associated with 

that deferral. The ADV is the marginal value per kVA that would accrue to the network 

each year if construction of the asset were avoided. This is underpinned by the logic that if 

the demand on the network can be retained at the level in the year prior to commissioning 

(which assumes that the asset was sufficiently unconstrained to warrant investment 

action), then the augmentation can be avoided. The ADV in year Y (ADV(Y)) in $/kVA/yr is 

determined from the annual peak demand forecast and the investment data using the 

following formula: 

   ( )   
       (         )           ⁄

(      )      
 

Where:  

AVGR is the Average Growth Rate in demand in year Y, 

INVY is the Commissioning Year,  

WACC is the Weighted Average Cost of Capital,  

DEPR is the Depreciation Rate, and 

INVA is the Investment Amount that is occurring for the asset. 

 

In the real world, there are instances where the asset is already constrained for several 

years prior to commissioning the network augmentation, and the network operator has 

advised what support is required in year 1, year 2, etc. In this case, the data is 

manipulated so that the model will output the specified support value, by making the 

demand in the year prior to commissioning equal to the demand in the commissioning 

year, less the required network support.   
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Note that the ADV in year Y is set to zero if either the average growth rate in demand is 

not positive, or the year is after the investment year, as it is assumed that by then the 

investment has occurred. 

 

6.1.4 Maximum potential 

In the case of a large embedded generator such as a CSP plant, it is important to consider 

the maximum generator size that could be connected at that point on the network. This is 

denoted as the maximum potential (MAXP) for an asset. MAXP is defined as: 

               

Where: 

MULT is the Multiplier defined by the user for the different energy providers, and  

PCAP is the Nameplate Capacity.  

 

6.1.4.1 Maximum exceedance 

In order to invest in a non-network solution to alleviate a network constraint, it is 

necessary to determine the maximum amount by which demand exceeds the ITP, which 

is defined as maximum exceedance (MAXE(SY)). MAXE(SY) is the amount by which 

maximum demand MDEM(SY) exceeds the ITP.  

 

6.1.4.2 Hours exceeding investment trigger point  

In order to design a CSP plant, it is necessary to have information on the hours that 

exceed the ITP. Each hourly demand in the specific year that exceeds the ITP has a 

(nominally) associated month and day. By keeping track of the times in the year that the 

demand exceeds the ITP, additional calculations, such as maximum exceedance in a 

given month or the maximum number of hours exceeded in any given day, can be readily 

determined.  

 

6.1.4.3 System calculations 

In the GIS deferral value outputs, the information presented is for the total upstream set or 

‘system’ of assets that are relevant at a given location. That is, each ZS is associated 

(linked by the user) with a Stli, or loop, and/or a transmission line or terminal station. The 

ADV in the GIS output displays the NPV and ADV for the system of assets that occur at 

the location of the ZS. The calculation for the NPV or ADV for a particular location is 

determined to be the sum of the individual assets in that system (commonly ZS, Stli and 

TS). 

 

6.2 METHODS FOR HANDLING INCOMPLETE DATA  

The model has been designed to be both flexible and robust at handling sparse data. This 

feature of DANCE is essential as often full information on a particular asset is not 

available. As a result, the DANCE model performs three tasks before any calculations are 

made. These tasks are: 
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1. Check the data to see what has and has not been entered; 

2. Estimate missing data wherever possible; and 

3. Determine which of the calculations described in Section 6.1 can actually be 

carried out, based on the input data.  

 

6.2.1.1 Checks to determine what data is available  

The model checks what data is available to determine which constraints can be mapped. 

Frequently, data sets are incomplete, so the model attempts to estimate those inputs 

which are required for the calculations. This component of the model determines which 

calculations (if any) can occur for a particular asset. 

 

6.2.1.2 Minimum data to map investment  

Valid investment data has been supplied if proposed investment year, an investment 

amount, and asset co-ordinates have been entered. If any of these three are not entered, 

the investment will not appear in the mapping  

 

6.2.1.3 Check capacity data supplied 

Valid capacity data has been supplied if at least one of the capacity fields (e.g. secure, 

nameplate or n-1) has been provided; otherwise capacity data is defined as not having 

been provided. 

 

6.2.1.4 Check average growth data supplied  

Valid average growth data has been supplied if at least one of the average growth fields 

has been supplied; otherwise average growth data is defined as not having been 

provided.  

 

6.2.1.5 Check demand data supplied 

Valid demand data has been supplied if two or more peak load demand values have been 

entered, or if only one peak load demand value has been supplied and average growth 

data has been supplied. Otherwise, demand data is defined as not having been provided. 

 

6.2.1.6 Check hourly demand supplied 

Valid hourly load curve data has been supplied, if either all hourly load data for one year 

(that is, 8760 hours) is supplied, or all data needed for the synthetic hourly process has 

been filled. Otherwise, hourly load curve data is defined as not having been provided. 

 

6.2.2 Estimating missing data  

6.2.2.1 Display name of an asset  

The display name of the asset is:  
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● The display name in the input sheet; or if not supplied, 

● The short name in the input sheet.  

 

Any asset that does not have a short name is ignored by the model. 

 

6.2.2.2 Average growth of an asset 

If neither demand data nor average growth data have been supplied, this section is 

ignored. Otherwise, the average growth is determined in one of two ways. If demand data 

has been entered for the start and finish year of the average growth period, then the 

average growth rate is the gradient determined from these two values. If complete 

demand data is not available, then either partial average growth data exists, or partial 

demand data exists.  

 

6.2.2.3 Partial average growth data 

If average growth input data has been partially provided, then the average growth rates 

not supplied are determined by: 

● The first average growth supplied, going backwards in time from the missing 

growth rate time period; or if no previous growth rates have been supplied, 

● The first average growth rate supplied, going forwards in time from the missing 

growth rate time period. 

 

6.2.2.4 Partial demand data  

If demand data has been supplied but average growth not supplied, then all the average 

growth rates are assigned the same growth rate. This growth rate is calculated as the 

average growth between the first year for which demand data has been provided, and 

either the demand in the investment year – if investment check is true and the investment 

year is later than the first valid year – or the last year for which demand data has been 

provided.  

 

6.2.2.5 Demand for an asset 

If demand has been supplied for at least two years, either forecast or estimated average 

growth data can be determined. Missing demand data is determined by applying the 

associated growth rates to the first valid year (first year that demand data exists) to 

determine the demand in the missing year. Mathematically, this is:  

                                                   ∑                      

            

                  

 

 

For example, if the missing year is 2015, then the first valid year is 2012. In 2012, demand 

is 100MVA/yr, the average growth rate between 2010 and 2013 is 10MVA/yr, and the 

growth rate from 2013 onwards is 15MVA/yr, then the estimated demand in the missing 

year, 2015, is:  
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140MVA/yr = 100MVA/yr (the value in 2012) + 10MVA/yr (the growth rate in 2013) 

+ 15MVA/yr (the growth rate in 2014) + 15MVA/yr (the growth rate in 2015). 

 

6.2.2.6 Capacity for an asset 

This is used to determine available capacity and maximum connection. If any capacity 

data (e.g. nameplate, n-1, secure) has been supplied, this is used to calculate available 

capacity and maximum connection as follows: 

Maximum connection 

● If the secure capacity is available, this is used as to determine the maximum 

connection (after adjusting with the multiplier for that network operator); 

● If secure capacity is not available, but the nameplate capacity is available, this is 

used as above; and 

● If only n-1 capacity is available, this is used as above.  

Available capacity 

● If the secure capacity is available, this is used as to determine available capacity 

by comparison with demand forecast;  

● Otherwise, if n-1 capacity is available, and the reliability criteria is n-1, the n-1 

capacity is used to determine available capacity, by comparison with demand 

forecast; 

● If only the nameplate capacity is available, or the reliability criteria is ‘n’, the 

nameplate capacity is used to determine available capacity; otherwise 

● The n-1 capacity must have been entered (since capacity data is supplied) and 

this capacity is used to fill all other capacity types.  

 

6.2.2.7 Investment trigger point for an asset 

The ITP for an asset is the forecast peak load (in MVA) that triggers investment in the 

network augmentation. Specifically, the model assumes that if the demand is always 

below the ITP, then the investment is deferred indefinitely, and similarly, if demand 

reaches or exceeds the ITP, then the investment to upgrade the network asset will 

commence immediately.   

 

The model estimates the ITP to be the following: 

● If n-1 Security of Supply support required is provided, then the ITP is taken to be 

this value;  

● If demand and investment data is available, the assumption is that the forecast 

demand in the investment year is sufficiently high to warrant investment; hence the 

ITP is taken as the previous year’s demand. The ITP is calculated as the forecast 

demand in the investment year minus the average growth rate in that year;  

● If neither demand nor investment data is available, but capacity data is available, 

the ITP is taken as the secure capacity (however, no deferral calculations will take 

place as no investment data has been entered); and 

● If the capacity is not available, and one of demand or investment is also not 

available, the ITP cannot be calculated.  
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6.2.2.8 Hourly values for an asset 

While the DANCE Model has the capacity to synthetically generate hourly demand values 

for a given asset from a series of basic inputs, this functionality was not used for this 

study. Hourly demand values were entered by the user. 

 

6.2.3 Determine what can be calculated 

6.2.3.1 Net present value  

The NPV is calculated for an asset if the investment data has been provided. 

 

6.2.3.2 Available capacity 

The available capacity is calculated for an asset if the demand has been supplied and 

either investment or capacity has also been provided.  

 

6.2.3.3 Annual deferral value  

The ADV is calculated if both the demand and investment has been supplied.  
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APPENDIX 2: MODELLING INDICATIVE FIRM 
CAPACITY 

This study utilises an existing simple energy-balance model of a CSP plant called 

SIMPLESYS (Stine & Geyer 2001). The original model was written in JavaScript and was 

recoded into Python code. A number of simple tests were used to validate that this 

translation was done correctly. Figure 30 shows a schematic of the SIMPLESYS model 

and the various parameters. 

 

Figure 30: Schematic of SIMPLESYS model and parameters 

 

Source: Power from the Sun (Stine & Geyer 2001), chapter 14. 

 

The model parameters are: 

● Auxilary power  QA (represents unmet load) 

● From collector field  QC 

● Dumped power  QD 

● Field heat loss   QF 

● Thermal load   QL 

● To/from storage rate  QS 

● Storage loss   SL 

 

The model provides for a basic operating strategy for a CSP plant where the unit can be 

started, then stopped, in any given hour over each 24 hour period. The model does not 

include any of the additional detail included in some other CSP models, such as NREL’s 

highly regarded System Advisor Model (SAM) (National Renewable Energy Laboratory 

2013). The focus, instead, has been on adequate accuracy whilst still achieving fast 

computation – required given the data intensive spatial processing involved. 

 

The collector input in the original SIMPLESYS model is a simple sinusoidal function 

representing a clear day, but we have replaced the collector model with actual hourly DNI 
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values estimated by the Australian Bureau of Meteorology in its satellite-derived gridded 

solar irradiance data at 5km resolution. Metadata for these data can be found at: 

http://www.bom.gov.au/climate/how/newproducts/IDCJAD0111.shtml 

 
  

http://www.bom.gov.au/climate/how/newproducts/IDCJAD0111.shtml
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SUMMER AFTERNOON:  

1 HOUR STORAGE 

SUMMER AFTERNOON:  

3 HOURS STORAGE 

APPENDIX 3: INDICATIVE FIRM CAPACITY 
RESULTS  

Figure 31 Summer afternoon Indicative Firm Capacity – 1, 3, 5, 10 hrs 
storage 

  

SUMMER AFTERNOON:  

5 HOURS STORAGE 

SUMMER AFTERNOON:  

10 HOURS STORAGE 
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Figure 32  Summer evening Indicative Firm Capacity – 1, 3, 5, 10 hrs storage 

 

 
 
 
  

SUMMER EVENING:  

1 HOUR STORAGE 

SUMMER EVENING:  

3 HOURS STORAGE 

SUMMER EVENING:  

5 HOURS STORAGE 

SUMMER EVENING:  

10 HOURS STORAGE 
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Figure 33  Winter afternoon Indicative Firm Capacity – 1, 3, 5, 10 hrs storage 

 
 
 
  

WINTER AFTERNOON:  

1 HOUR STORAGE 

WINTER AFTERNOON:  

3 HOURS STORAGE 

WINTER AFTERNOON:  

5 HOURS STORAGE 

WINTER AFTERNOON:  

10 HOURS STORAGE 
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Figure 34  Winter evening Indicative Firm Capacity – 1, 3, 5, 10 hrs storage 

  

WINTER EVENING:  

1 HOUR STORAGE 

WINTER EVENING: 

3 HOURS STORAGE 

WINTER EVENING:  

5 HOURS STORAGE 

WINTER EVENING:  

10 HOURS STORAGE 
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Figure 35 Indicative Firm Capacity all time periods – no storage 

 

 

SUMMER AFTERNOON:  

NO STORAGE 

SUMMER EVENING:  

NO STORAGE 

WINTER AFTERNOON:  

NO STORAGE 

WINTER EVENING:  

NO STORAGE 
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Figure 36 Indicative Firm Capacity all time periods – 15 hours storage 

 

SUMMER AFTERNOON:  

15 HOURS STORAGE 

SUMMER EVENING:  

15 HOURS STORAGE 

WINTER AFTERNOON:  

15 HOURS STORAGE 

WINTER EVENING:  

15 HOURS STORAGE 


