# TONGA POWER LIMITED

TONGA RENEWABLE ENERGY ROADMAP

PESALILI TOHI Tonga Power Limited



## **OVERVIEW**

- T.P.L CORE PURPOSE
- Tonga's Renewable Energy Penetration
- Where do we want to be
- How do we get there
- Renewable Energy Road Map
- Hybrid System Plan to reach 50% by 2020
- Summary

#### T.P.L CORE PURPOSE

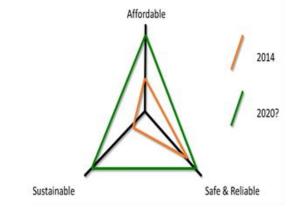
Safe, Reliable, Sustainable and Affordable Power Service to the People of Tonga

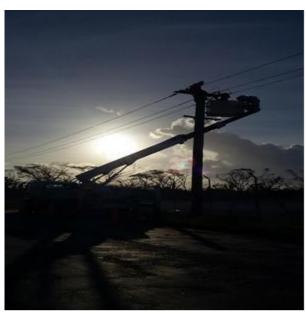
#### **TPL MISSION:**

To deliver the nation's core purpose via our strategies and Business Plan

To be financially sustainable

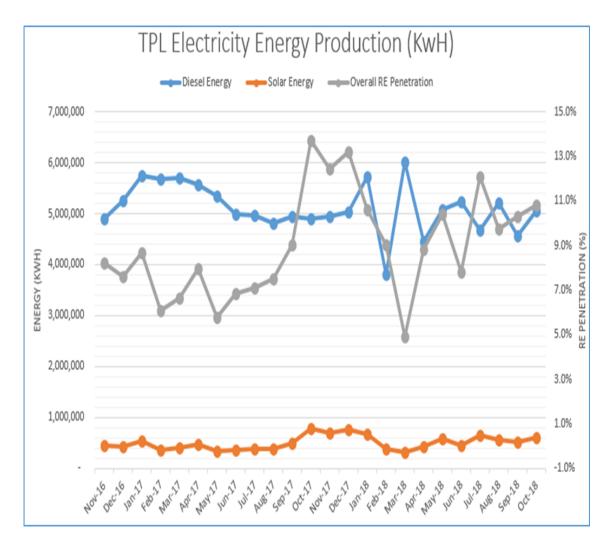
'every public enterprises and subsidiary to operate as a successful business and, to this end, to be as profitable and efficient as comparable businesses that are not state owned'


#### **TONGA CORE PURPOSE:**


Reduce Tonga's vulnerability to oil price shocks, and achieve an increase in quality access to modern energy services in an affordable and environmentally sustainable manner

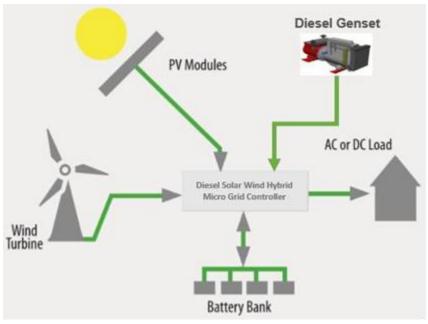
50% RENEWABLE BY 2020 & 70% RENEWABLE BY 2030

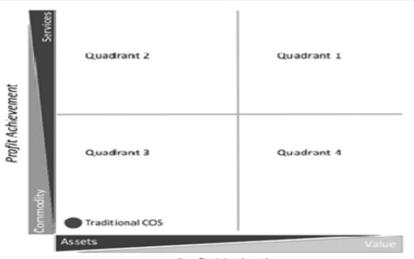
#### Key Energy Outcomes:


- National security of supply of energy
- Economic development- competitive energy pricing
- Standard of Living- energy price, quality, services
- Low carbon energy system






## Tonga's Renewable Energy Penetration


- Consistently between 7% and 11%
- Best month achieved is 14% 16%
- Diesel Generation RE absorption limit reached (4.3MW)
- 17.7 MW of Diesel Capacity Installed
- 6.2 MW of RE Installed On-grid (Solar PV, Wind, IPP)
- 1.8 MW/1.6 MWh Total BESS Installed



## Where We want to be?

- Specifically 17.5 MW of RE and 10 MW/20 MWh Energy storage added to the Tongatapu system
- Measure 50% or more of electricity generation from RE
- Achievable Through significant donor, private sector investment and a dedicated implementation team
- Relative Socio-economic benefits through tariff stability due to less impact of oil price shock
- Time Bound before the end of 2020



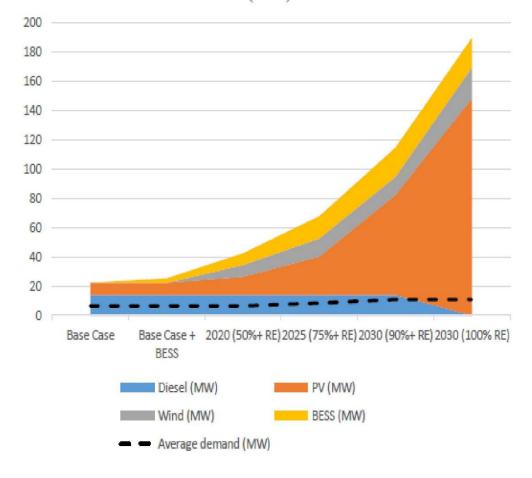


Profit Motivation

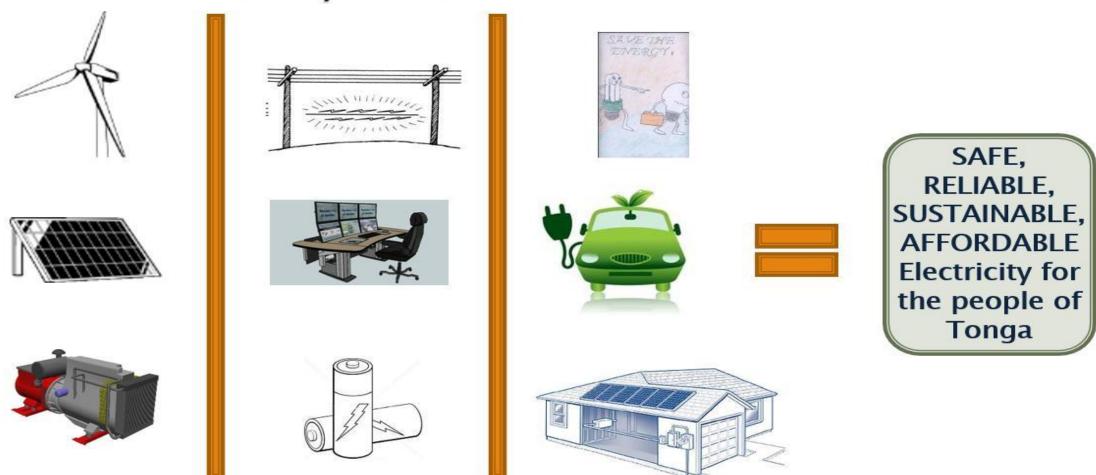
# How do we get there?

| Generation                                                | Distribution                                        | Retail                                                     |
|-----------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------|
| Energy Portfolio<br>Management                            | Network Planning &.<br>Design                       | Sales, Marketing &<br>Customer Care                        |
| Plant Construction &<br>Maintenance                       | Network Construction &<br>Maintenance               | Meter Reading & Billing                                    |
| Generation Asset<br>Management                            | Network Asset &<br>Investment Management            | Payments Collection                                        |
| Generation Operations &<br>Control                        | Network Operations<br>(Projects/ Faults/Disco/Reco) | Credit Management                                          |
| Human Resource<br>(People & Culture)                      | ERP                                                 | Purchasing & Supplier<br>Management                        |
| Financial Management                                      | Health & Safety                                     | Risk & Compliance                                          |
|                                                           |                                                     | Management                                                 |
| Systems Support & Main<br>(Application, Infrastructure, I |                                                     | Management<br>nitecture Governance,<br>novation & Strategy |

# Renewable Energy Road Map




|                    | Plant                                  | Capacity (AC) Inst | alled | 2014 | 2015       | 2016   | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 Future                  |  |
|--------------------|----------------------------------------|--------------------|-------|------|------------|--------|------|------|------|------|------|------|------|------|------------------------------|--|
|                    | 6x Caterpillar (CAT-1750kVA-50Hz-CP_C) | 9.6                | 2004  |      |            |        |      |      |      |      |      |      |      |      | Phase out                    |  |
|                    | 2 x MAK 2.88 6CM32                     | 5.6                | 2014  |      |            |        |      |      |      |      |      |      |      |      | Maintain                     |  |
| Existing           | Solar PV (Maama Mai)                   | 1.3                | 2014  |      |            |        |      |      |      |      |      |      |      |      | 25 year (Refurb 2039)        |  |
| EXISTING           | Solar PV (Vaini)                       | 1                  | 2015  |      |            |        |      |      |      |      |      |      |      |      | 25 year (Refurb 2040)        |  |
|                    | Solar PV (Villa)                       | 2                  | 2017  |      |            |        |      |      |      |      |      |      |      |      | 25 year (Refurb 2042)        |  |
|                    | Solar PV (distributed rooftop)         | 0.5                | 2015- |      |            |        |      |      |      |      |      |      |      |      | Ongoing                      |  |
| Under construction | Wind (JICA - Niutoua)                  | 1.37               |       |      |            | 1.     |      |      |      |      |      |      |      |      | 20 year (refurb 2038)        |  |
| Proposed           | BESS (TREP)                            | 5,000              | 2019  | Ţ    | REP Subpro | ject 3 |      |      |      |      |      |      |      |      | 25 year (replace cells 2031) |  |
|                    | Solar PV (TREP - Matafonua)            | 2                  | 2019  | T    | REP Subpro | ject 1 |      |      |      |      |      |      |      |      | 25 year (refurb 2046)        |  |
|                    | Solar PV (TREP - Fahefa)               | 2                  | 2019  | T    | REP Subpro | ject 1 |      |      | - 1  |      |      |      |      |      | 25 year (refurb 2046)        |  |
|                    | Wind (TREP - Niutoua)                  | 3.8                | 2020  | T    | REP Subpro | ject 2 |      |      |      |      |      |      |      |      | 20 year (refurb 2040)        |  |
| Proposed -         | Wind (GoC)                             | 2                  | 2020  |      |            |        |      | 1    |      |      |      |      |      |      | 20 year (refurb 2040)        |  |
| dependent on BESS  | Solar PV (Future)                      | 2                  | 2020  |      |            | -      | -3.7 | 7    |      |      |      |      |      |      | 25 year (refurb 2047)        |  |
|                    | Solar PV (Future)                      | 2                  | 2020  | \    |            |        | abla |      |      |      |      |      |      |      | 25 year (refurb 2047)        |  |
|                    | Wind (2020->2030)                      | 5.3                | 2021  |      |            |        |      |      |      |      |      |      |      |      | W W                          |  |
|                    | Solar PV (2020->2030)                  | See ->             | See-> | - 10 |            |        |      |      |      | L Ü  | 4    | 4    | 4    | 4    | 4 +2MW/yearfor growth        |  |
| Totals             | Cumulative Wind                        |                    |       |      |            |        |      | 1.3  | 1.3  | 7.1  | 12.4 | 12.4 | 12.4 | 12.4 | 12.4                         |  |
| 10(8)5             | Cumulative Solar PV                    | 7.5                |       | 1.3  | 2.8        | 2.8    | 4.8  | 4.8  | 8.8  | 12.8 | 16.8 | 20.8 | 24.8 | 28.8 | 32.8 +2MW/yearfor growth     |  |


### System configuration results

|                                 | Demand models |           |                     |                      |                      |                      |                      |  |  |
|---------------------------------|---------------|-----------|---------------------|----------------------|----------------------|----------------------|----------------------|--|--|
|                                 | Unit          | Base Case | Base Case<br>+ BESS | 2020<br>(>50%<br>RE) | 2025<br>(>75%<br>RE) | 2030<br>(>90%<br>RE) | 2030<br>(100%<br>RE) |  |  |
| Diesel Generation               | MW            | 14        | 14                  | 14                   | 14                   | 14                   | -                    |  |  |
| PV #1 Grant                     | MW            | 2.3       | 2.3                 | 2.3                  | 2.3                  | 2.3                  | 2.3                  |  |  |
| PV #2 \$0.15/kWh                | MW            | 2         | 2                   | 2                    | 2                    | 2                    | 2                    |  |  |
| PV #3 \$0.12/kWh                | MW            | 4         | 4                   | 4                    | 4                    | 4                    | 4                    |  |  |
| Additional PV @ \$0.12/kWh      | MW            | -         | -                   | 4                    | 18                   | 60                   | 140                  |  |  |
| Wind Farm #1 JICA Grant         | MW            | -         | -                   | 1.4                  | 1.4                  | 1.4                  | 1.4                  |  |  |
| Wind Farm #2 GoC Grant          | MW            | -         |                     | 2.2                  | 2.2                  | 2.2                  | 2.2                  |  |  |
| Additional wind @<br>\$0.15/kWh | MW            | -         | -                   | 4.4                  | 8.8                  | 8.8                  | 17.6                 |  |  |
| ESS - Peak Power                | MW            | -         | 3                   | 8                    | 15                   | 20                   | 20                   |  |  |
| ESS - Energy Capacity           | MWh           | -         | 8.4                 | 26.3                 | 73.5                 | 147                  | 273                  |  |  |
| Average demand                  | MW            | 6.56      | 6.56                | 6.56                 | 8.36                 | 10.72                | 10.72                |  |  |

# Installed generation capacity vs. average demand (MW)



Hybrid System Plan to reach 50% Renewable Penetration by 2020



# Summary

|                | <b>Current Actions</b>                                                                                                         | 3 year                                                                                                                                         | 10 year                                                                                                                                |  |  |  |  |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| TPL Utility    | <ul> <li>Installing RE project with an aim to reach 50%R RE by 2020</li> <li>Invest in our workers by trained them</li> </ul>  | <ul> <li>Target to reach 50% RE by 2020</li> <li>Re-design our network to best suit our installed RE (eg. Using ring feeder)</li> </ul>        | <ul> <li>Target 70% RE by 2030</li> <li>Change from manual operation to automation</li> </ul>                                          |  |  |  |  |  |
| Consultants    | Help with designing of RE projects to achieve goal                                                                             | <ul> <li>More consultation on RE plans<br/>especially operations</li> <li>Train engineers on maintaining<br/>and operating these RE</li> </ul> | <ul> <li>Operations to become automations</li> <li>More training for engineers on operating and maintaining the RE projects</li> </ul> |  |  |  |  |  |
| Tonga Govt     | Work closely together with TPL                                                                                                 | <ul> <li>Let TPL be involved in<br/>their(Government's) Energy<br/>planning</li> </ul>                                                         | <ul> <li>Continue working together with<br/>TPL toward funds on the<br/>upcoming projects to achieved<br/>goals</li> </ul>             |  |  |  |  |  |
| Research       | <ul> <li>Research on types of RE<br/>technologies like battery,<br/>biomass, tidal, etc. that best<br/>suited Tonga</li> </ul> | More training and research on other RE technologies                                                                                            | Start presenting what will be the best technology for Tonga                                                                            |  |  |  |  |  |
| Donors/finance | Decrease the amount of paper works needed in order to release funds                                                            |                                                                                                                                                |                                                                                                                                        |  |  |  |  |  |

# MALO AUPITO....Any Question??

